Skip to main content
Log in

Safety and Biodistribution of Human Bone Marrow-Derived Mesenchymal Stromal Cells Injected Intrathecally in Non-Obese Diabetic Severe Combined Immunodeficiency Mice: Preclinical Study

  • Original Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Background:

Mesenchymal stromal cells (MSCs) have potent immunomodulatory and neuroprotective properties, and have been tested in neurodegenerative diseases resulting in meaningful clinical improvements. Regulatory guidelines specify the need to perform preclinical studies prior any clinical trial, including biodistribution assays and tumourigenesis exclusion. We conducted a preclinical study of human bone marrow MSCs (hBM-MSCs) injected by intrathecal route in Non-Obese Diabetic Severe Combined Immunodeficiency mice, to explore cellular biodistribution and toxicity as a privileged administration method for cell therapy in Friedreich’s Ataxia.

Methods:

For this purpose, 3 × 105 cells were injected by intrathecal route in 12 animals (experimental group) and the same volume of culture media in 6 animals (control group). Blood samples were collected at 24 h (n = 9) or 4 months (n = 9) to assess toxicity, and nine organs were harvested for histology and safety studies. Genomic DNA was isolated from all tissues, and mouse GAPDH and human β2M and β-actin genes were amplified by qPCR to analyze hBM-MSCs biodistribution.

Results:

There were no deaths nor acute or chronic toxicity. Hematology, biochemistry and body weight were in the range of normal values in all groups. At 24 h hBM-MSCs were detected in 4/6 spinal cords and 1/6 hearts, and at 4 months in 3/6 hearts and 1/6 brains of transplanted mice. No tumours were found.

Conclusion:

This study demonstrated that intrathecal injection of hBM-MSCs is safe, non toxic and do not produce tumors. These results provide further evidence that hBM-MSCs might be used in a clinical trial in patients with FRDA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Reyes B, Coca MI, Codinach M, López-Lucas MD, Del Mazo-Barbara A, Caminal M, et al. Assessment of biodistribution using mesenchymal stromal cells: algorithm for study design and challenges in detection methodologies. Cytotherapy. 2017;19:1060–9.

    Article  Google Scholar 

  2. Campuzano V, Montermini L, Moltò MD, Pianese L, Cossée M, Cavalcanti F, et al. Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science. 1996;271:1423–7.

    Article  CAS  Google Scholar 

  3. Punga T, Bühler M. Long intronic GAA repeats causing Friedreich ataxia impede transcription elongation. EMBO Mol Med. 2010;2:120–9.

    Article  CAS  Google Scholar 

  4. Schulz JB, Boesch S, Bürk K, Dürr A, Giunti P, Mariotti C, et al. Diagnosis and treatment of Friedreich ataxia: a European perspective. Nat Rev Neurol. 2009;5:222–34.

    Article  Google Scholar 

  5. Koeppen AH. Friedreich’s ataxia: pathology, pathogenesis, and molecular genetics. J Neurol Sci. 2011;303:1–12.

    Article  CAS  Google Scholar 

  6. Pousset F, Legrand L, Monin ML, Ewenczyk C, Charles P, Komajda M, et al. A 22-year follow-up study of long-term cardiac outcome and predictors of survival in Friedreich ataxia. JAMA Neurol. 2015;72:1334–41.

    Article  Google Scholar 

  7. Delatycki MB, Corben LA. Clinical features of Friedreich ataxia. J Child Neurol. 2012;27:1133–7.

    Article  Google Scholar 

  8. Marmolino D. Friedreich’s ataxia: past, present and future. Brain Res Rev. 2011;67:311–30.

    Article  CAS  Google Scholar 

  9. Koeppen AH, Ramirez RL, Becker AB, Mazurkiewicz JE. Dorsal root ganglia in Friedreich ataxia: satellite cell proliferation and inflammation. Acta Neuropathol Commun. 2016;4:46.

    Article  CAS  Google Scholar 

  10. Long A, Napierala JS, Polak U, Hauser L, Koeppen AH, Lynch DR, et al. Somatic instability of the expanded GAA repeats in Friedreich’s ataxia. PLoS One. 2017;12:e0189990.

    Article  CAS  Google Scholar 

  11. Moraleda JM, Blanquer M, Bleda P, Iniesta P, Ruiz F, Bonilla S, et al. Adult stem cell therapy: dream or reality? Transpl Immunol. 2006;17:74–7.

    Article  CAS  Google Scholar 

  12. Blanquer M, Moraleda JM, Iniesta F, Gómez-Espuch J, Meca-Lallana J, Villaverde R, et al. Neurotrophic bone marrow cellular nests prevent spinal motoneuron degeneration in amyotrophic lateral sclerosis patients: a pilot safety study. Stem Cells. 2012;30:1277–85.

    Article  CAS  Google Scholar 

  13. Bueno C, Ramirez C, Rodríguez-Lozano FJ, Tabarés-Seisdedos R, Rodenas M, Moraleda JM, et al. Human adult periodontal ligament-derived cells integrate and differentiate after implantation into the adult mammalian brain. Cell Transplant. 2013;22:2017–28.

    Article  Google Scholar 

  14. Jones J, Estirado A, Redondo C, Pacheco-Torres J, Sirerol-Piquer MS, Garcia-Verdugo JM, et al. Mesenchymal stem cells improve motor functions and decrease neurodegeneration in ataxic mice. Mol Ther. 2015;23:130–8.

    Article  CAS  Google Scholar 

  15. Ruiz-López FJ, Blanquer M. Autologous bone marrow mononuclear cells as neuroprotective treatment of amyotrophic lateral sclerosis. Neural Regen Res. 2016;11:568–9.

    Article  Google Scholar 

  16. Rodríguez-Lozano FJ, Bueno C, Insausti CL, Meseguer L, Ramírez MC, Blanquer M, et al. Mesenchymal stem cells derived from dental tissues. Int Endod J. 2011;44:800–6.

    Article  Google Scholar 

  17. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy. 2006;8:315–7.

    Article  CAS  Google Scholar 

  18. Wang Y, Chen X, Cao W, Shi Y. Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications. Nat Immunol. 2014;15:1009–16.

    Article  CAS  Google Scholar 

  19. Mazzini L, Fagioli F, Boccaletti R, Mareschi K, Oliveri G, Olivieri C, et al. Stem cell therapy in amyotrophic lateral sclerosis: a methodological approach in humans. Amyotroph Lateral Scler Other Motor Neuron Disord. 2003;4:158–61.

    Article  Google Scholar 

  20. Pastor D, Viso-León MC, Botella-López A, Jaramillo-Merchan J, Moraleda JM, Jones J, et al. Bone marrow transplantation in hindlimb muscles of motoneuron degenerative mice reduces neuronal death and improves motor function. Stem Cells Dev. 2013;22:1633–44.

    Article  Google Scholar 

  21. Quesada MP, Jones J, Rodríguez-Lozano FJ, Moraleda JM, Martinez S. Novel aberrant genetic and epigenetic events in Friedreich’s ataxia. Exp Cell Res. 2015;335:51–61.

    Article  CAS  Google Scholar 

  22. Jones J, Estirado A, Redondo C, Bueno C, Martínez S. Human adipose stem cell-conditioned medium increases survival of Friedreich’s ataxia cells submitted to oxidative stress. Stem Cells Dev. 2012;21:2817–26.

    Article  CAS  Google Scholar 

  23. Kemp K, Mallam E, Hares K, Witherick J, Scolding N, Wilkins A. Mesenchymal stem cells restore frataxin expression and increase hydrogen peroxide scavenging enzymes in Friedreich ataxia fibroblasts. PLoS One. 2011;6:e26098.

    Article  CAS  Google Scholar 

  24. Jones J, Estirado A, Redondo C, Martinez S. Stem cells from wildtype and Friedreich’s ataxia mice present similar neuroprotective properties in dorsal root ganglia cells. PLoS One. 2013;8:e62807.

    Article  CAS  Google Scholar 

  25. Rocca CJ, Goodman SM, Dulin JN, Haquang JH, Gertsman I, Blondelle J, et al. Transplantation of wild-type mouse hematopoietic stem and progenitor cells ameliorates deficits in a mouse model of Friedreich’s ataxia. Sci Transl Med. 2017;9:eaaj2347

    Article  CAS  Google Scholar 

  26. Cabanes C, Bonilla S, Tabares L, Martínez S. Neuroprotective effect of adult hematopoietic stem cells in a mouse model of motoneuron degeneration. Neurobiol Dis. 2007;26:408–18.

    Article  CAS  Google Scholar 

  27. Selvadurai LP, Harding IH, Corben LA, Georgiou-Karistianis N. Cerebral abnormalities in Friedreich ataxia: a review. Neurosci Biobehav Rev. 2018;84:394–406.

    Article  Google Scholar 

  28. Harris VK, Vyshkina T, Sadiq SA. Clinical safety of intrathecal administration of mesenchymal stromal cell-derived neural progenitors in multiple sclerosis. Cytotherapy. 2016;18:1476–82.

    Article  CAS  Google Scholar 

  29. Choi SA, Yun JW, Joo KM, Lee JY, Kwak PA, Lee YE, et al. Preclinical biosafety evaluation of genetically modified human adipose tissue-derived mesenchymal stem cells for clinical applications to brainstem glioma. Stem Cells Dev. 2016;25:897–908.

    Article  CAS  Google Scholar 

  30. Toupet K, Maumus M, Peyrafitte JA, Bourin P, van Lent PL, Ferreira R, et al. Long-term detection of human adipose-derived mesenchymal stem cells after intraarticular injection in SCID mice. Arthritis Rheum. 2013;65:1786–94.

    Article  CAS  Google Scholar 

  31. Lalu MM, McIntyre L, Pugliese C, Fergusson D, Winston BW, Marshall JC, et al. Safety of cell therapy with mesenchymal stromal cells (SafeCell): a systematic review and meta-analysis of clinical trials. PLoS One. 2012;7:e47559.

    Article  CAS  Google Scholar 

  32. Ullah I, Subbarao RB, Rho GJ. Human mesenchymal stem cells—current trends and future prospective. Biosci Rep. 2015;35:e00191

    Article  CAS  Google Scholar 

  33. Joyce N, Annett G, Wirthlin L, Olson S, Bauer G, Nolta JA. Mesenchymal stem cells for the treatment of neurodegenerative disease. Regen Med. 2010;5:933–46.

    Article  Google Scholar 

  34. Creane M, Howard L, O’Brien T, Coleman CM. Biodistribution and retention of locally administered human mesenchymal stromal cells: quantitative polymerase chain reaction-based detection of human DNA in murine organs. Cytotherapy. 2017;19:384–94.

    Article  CAS  Google Scholar 

  35. Forostyak S, Jendelova P, Kapcalova M, Arboleda D, Sykova E. Mesenchymal stromal cells prolong the lifespan in a rat model of amyotrophic lateral sclerosis. Cytotherapy. 2011;13:1036–46.

    Article  CAS  Google Scholar 

  36. Forostyak S, Homola A, Turnovcova K, Svitil P, Jendelova P, Sykova E. Intrathecal delivery of mesenchymal stromal cells protects the structure of altered perineuronal nets in SOD1 rats and amends the course of ALS. Stem Cells. 2014;32:3163–72.

    Article  CAS  Google Scholar 

  37. Leibacher J, Henschler R. Biodistribution, migration and homing of systemically applied mesenchymal stem/stromal cells. Stem Cell Res Ther. 2016;7:7.

    Article  CAS  Google Scholar 

  38. François S, Usunier B, Douay L, Benderitter M, Chapel A. Long-term quantitative biodistribution and side effects of human mesenchymal stem cells (hMSCs) engraftment in NOD/SCID mice following irradiation. Stem Cells Int. 2014;2014:939275.

    Article  CAS  Google Scholar 

  39. Harris VK, Stark J, Vyshkina T, Blackshear L, Joo G, Stefanova V, et al. Phase I trial of intrathecal mesenchymal stem cell-derived neural progenitors in progressive multiple sclerosis. EBioMedicine. 2018;29:23–30.

    Article  Google Scholar 

  40. Santamaría AJ, Benavides FD, DiFede DL, Khan A, Pujol MV, Dietrich WD, et al. Clinical and neurophysiological changes after targeted intrathecal injections of bone marrow stem cells in a C3 tetraplegic subject. J Neurotrauma. 2019;36:500–16.

    Article  Google Scholar 

  41. Vaquero J, Zurita M, Rico MA, Aguayo C, Bonilla C, Marin E, et al. Intrathecal administration of autologous mesenchymal stromal cells for spinal cord injury: safety and efficacy of the 100/3 guideline. Cytotherapy. 2018;20:806–19.

    Article  Google Scholar 

  42. Karussis D, Karageorgiou C, Vaknin-Dembinsky A, Gowda-Kurkalli B, Gomori JM, Kassis I, et al. Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol. 2010;67:1187–94.

    Article  Google Scholar 

  43. Petrou P, Gothelf Y, Argov Z, Gotkine M, Levy YS, Kassis I, et al. Safety and clinical effects of mesenchymal stem cells secreting neurotrophic factor transplantation in patients with amyotrophic lateral sclerosis: results of phase 1/2 and 2a clinical trials. JAMA Neurol. 2016;73:337–44.

    Article  Google Scholar 

  44. Oh KW, Moon C, Kim HY, Oh SI, Park J, Lee JH, et al. Phase I trial of repeated intrathecal autologous bone marrow-derived mesenchymal stromal cells in amyotrophic lateral sclerosis. Stem Cells Transl Med. 2015;4:590–7.

    Article  CAS  Google Scholar 

  45. Syková E, Rychmach P, Drahorádová I, Konrádová S, Růžičková K, Voříšek I, et al. Transplantation of mesenchymal stromal cells in patients with amyotrophic lateral sclerosis: results of phase I/IIa clinical trial. Cell Transplant. 2017;26:647–58.

    Article  Google Scholar 

  46. McBride C, Gaupp D, Phinney DG. Quantifying levels of transplanted murine and human mesenchymal stem cells in vivo by real-time PCR. Cytotherapy. 2003;5:7–18.

    Article  CAS  Google Scholar 

  47. Kim H, Kim HY, Choi MR, Hwang S, Nam KH, Kim HC, et al. Dose-dependent efficacy of ALS-human mesenchymal stem cells transplantation into cisterna magna in SOD1-G93A ALS mice. Neurosci Lett. 2010;468:190–4.

    Article  CAS  Google Scholar 

  48. García Santos JM, Inuggi A, Gómez Espuch J, Vázquez C, Iniesta F, Blanquer M, et al. Spinal cord infusion of stem cells in amyotrophic lateral sclerosis: magnetic resonance spectroscopy shows metabolite improvement in the precentral gyrus. Cytotherapy. 2016;18:785–96.

    Article  CAS  Google Scholar 

  49. Bonilla S, Silva A, Valdés L, Geijo E, García-Verdugo JM, Martínez S. Functional neural stem cells derived from adult bone marrow. Neuroscience. 2005;133:85–95.

    Article  CAS  Google Scholar 

  50. Pastor D, Viso-León MC, Jones J, Jaramillo-Merchán J, Toledo-Aral JJ, Moraleda JM, et al. Comparative effects between bone marrow and mesenchymal stem cell transplantation in GDNF expression and motor function recovery in a motorneuron degenerative mouse model. Stem Cell Rev. 2012;8:445–58.

    Article  CAS  Google Scholar 

  51. Jones J, Jaramillo-Merchán J, Bueno C, Pastor D, Viso-León M, Martínez S. Mesenchymal stem cells rescue Purkinje cells and improve motor functions in a mouse model of cerebellar ataxia. Neurobiol Dis. 2010;40:415–23.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Dra. Carmen Algueró for assistant with flow cytometry, Dr. Tornel-Osorio (Hospital Clínico Universitario Virgen de la Arrixaca) for assistant with the hematology and biochemistry analysis and Dra. Antón-García (Genomic Lab, IMIB-Arrixaca) for technical assistance. This work was supported by the Fundación Mutua Madrileña (AP162842016), Asociación Granadina de Ataxia de Friederich (ASOGAF), Instituto de Salud Carlos III (ISCIII) Spanish Net of Cell Therapy (TerCel), RETICS subprogram of the I + D + I 2013–2016 Spanish National Plan, Projects “RD12/0019/0001”, “RD12/0019/0023”, “RD16/0011/0001” and “RD16/0011/0010” funded by ISCIII and co-founded by European Regional Development Funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mari Paz Quesada.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

The use of human bone marrow cells was in accordance with the guidelines and regulations of the Ethics Committee of the Hospital Clínico Universitario Virgen de la Arrixaca (Murcia, Spain). All of the donors provided written informed consent prior to participation in this study. The procedures performed in this work involving animals were approved by the Ethical Committee on Animal Experimentation at University of Murcia (220/2016). All the experimental procedures involving animals were conducted in accordance with the Institutional Animal care guidelines of Murcia University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quesada, M.P., García-Bernal, D., Pastor, D. et al. Safety and Biodistribution of Human Bone Marrow-Derived Mesenchymal Stromal Cells Injected Intrathecally in Non-Obese Diabetic Severe Combined Immunodeficiency Mice: Preclinical Study. Tissue Eng Regen Med 16, 525–538 (2019). https://doi.org/10.1007/s13770-019-00202-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-019-00202-1

Keywords

Navigation