Skip to main content
Log in

Stem Cell-Based Therapies for Liver Diseases: An Overview and Update

  • Review Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

BACKGROUND:

Liver disease is one of the top causes of death globally. Although liver transplantation is a very effective treatment strategy, the shortage of available donor organs, waiting list mortality, and high costs of surgery remain huge problems. Stem cells are undifferentiated cells that can differentiate into a variety of cell types. Scientists are exploring the possibilities of generating hepatocytes from stem cells as an alternative for the treatment of liver diseases.

METHODS:

In this review, we summarized the updated researches in the field of stem cell-based therapies for liver diseases as well as the current challenges and future expectations for a successful cell-based liver therapy.

RESULTS:

Several cell types have been investigated for liver regeneration, such as embryonic stem cells, induced pluripotent stem cells, liver stem cells, mesenchymal stem cells, and hematopoietic stem cells. In vitro and in vivo studies have demonstrated that stem cells are promising cell sources for the liver regeneration.

CONCLUSION:

Stem cell-based therapy could be a promising therapeutic method for patients with end-stage liver disease, which may alleviate the need for liver transplantation in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Michalopoulos GK, DeFrances MC. Liver regeneration. Science. 1997;276:60–6.

    Article  CAS  PubMed  Google Scholar 

  2. Şentürk Ü, Yücedağ I, Polat K. Repetitive neural network (RNN) based blood pressure estimation using PPG and ECG signals. In 2018 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT) 2018 Oct 19. IEEE.

  3. Song AT, Avelino-Silva VI, Pecora RA, Pugliese V, D’Albuquerque LA, Abdala E. Liver transplantation: fifty years of experience. World J Gastroenterol. 2014;20:5363–74.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Soltys KA, Setoyama K, Tafaleng EN, Soto Gutiérrez A, Fong J, Fukumitsu K, et al. Host conditioning and rejection monitoring in hepatocyte transplantation in humans. J Hepatol. 2017;66:987–1000.

    Article  CAS  PubMed  Google Scholar 

  5. Forbes SJ, Gupta S, Dhawan A. Cell therapy for liver disease: From liver transplantation to cell factory. J Hepatol. 2015;62:S157–69.

    Article  CAS  PubMed  Google Scholar 

  6. Volarevic V, Nurkovic J, Arsenijevic N, Stojkovic M. Concise review: therapeutic potential of mesenchymal stem cells for the treatment of acute liver failure and cirrhosis. Stem cells. 2014;32:2818–23.

    Article  CAS  PubMed  Google Scholar 

  7. Trounson A, McDonald C. Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell. 2015;17:11–22.

    Article  CAS  PubMed  Google Scholar 

  8. Lane SW, Williams DA, Watt FM. Modulating the stem cell niche for tissue regeneration. Nat Biotechnol. 2014;32:795–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kopp JL, Grompe M, Sander M. Stem cells versus plasticity in liver and pancreas regeneration. Nat Cell Biol. 2016;18:238–45.

    Article  CAS  PubMed  Google Scholar 

  10. Katagiri H, Kushida Y, Nojima M, Kuroda Y, Wakao S, Ishida K, et al. A distinct subpopulation of bone marrow mesenchymal stem cells, muse cells, directly commit to the replacement of liver components. Am J Transplant. 2016;16:468–83.

    Article  CAS  PubMed  Google Scholar 

  11. Wagers AJ, Weissman IL. Plasticity of adult stem cells. Cell. 2004;116:639–48.

    Article  CAS  PubMed  Google Scholar 

  12. Itoh T, Miyajima A. Liver regeneration by stem/progenitor cells. Hepatology. 2014;59:1617–26.

    Article  CAS  PubMed  Google Scholar 

  13. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7.

    Article  CAS  PubMed  Google Scholar 

  14. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292:154–6.

    Article  CAS  PubMed  Google Scholar 

  15. Ware CB, Nelson AM, Mecham B, Hesson J, Zhou W, Jonlin EC, et al. Derivation of naive human embryonic stem cells. Proc Natl Acad Sci U S A. 2014;111:4484–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kuai XL, Shao N, Lu H, Xiao SD, Zheng Q. Differentiation of nonhuman primate embryonic stem cells into hepatocyte-like cells. J Dig Dis. 2014;15:27–34.

    Article  CAS  PubMed  Google Scholar 

  17. Brolén G, Sivertsson L, Björquist P, Eriksson G, Ek M, Semb H, et al. Hepatocyte-like cells derived from human embryonic stem cells specifically via definitive endoderm and a progenitor stage. J Biotechnol. 2010;145:284–94.

    Article  CAS  PubMed  Google Scholar 

  18. Woo DH, Kim SK, Lim HJ, Heo J, Park HS, Kang GY, et al. Direct and indirect contribution of human embryonic stem cell–derived hepatocyte-like cells to liver repair in mice. Gastroenterology. 2012;142:602–11.

    Article  CAS  PubMed  Google Scholar 

  19. Tolosa L, Caron J, Hannoun Z, Antoni M, López S, Burks D, et al. Transplantation of hESC-derived hepatocytes protects mice from liver injury. Stem Cell Res Ther. 2015;6:246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang M, Yang X, Zhang P, Cai L, Yang X, Chen Y, et al. Sustained delivery growth factors with polyethyleneimine-modified nanoparticles promote embryonic stem cells differentiation and liver regeneration. Adv Sci (Weinh). 2016;3:1500393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.

    Article  CAS  PubMed  Google Scholar 

  22. Pettinato G, Wen X, Zhang N. Engineering strategies for the formation of embryoid bodies from human pluripotent stem cells. Stem Cells Dev. 2015;24:1595–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ratajczak MZ, Bujko K, Wojakowski W. Stem cells and clinical practice: new advances and challenges at the time of emerging problems with induced pluripotent stem cell therapies. Pol Arch Med Wewn. 2016;126:879–90.

    PubMed  Google Scholar 

  24. Cai J, Zhao Y, Liu Y, Ye F, Song Z, Qin H, et al. Directed differentiation of human embryonic stem cells into functional hepatic cells. Hepatology. 2007;45:1229–39.

    Article  CAS  PubMed  Google Scholar 

  25. Noto FK, Duncan SA. Generation of hepatocyte-like cells from human pluripotent stem cells. In: Sell S, editor. Stem Cells Handbook. New York: Humana Press; 2013. p. 139–47.

    Chapter  Google Scholar 

  26. Si-Tayeb K, Noto FK, Nagaoka M, Li J, Battle MA, Duris C, et al. Highly efficient generation of human hepatocyte–like cells from induced pluripotent stem cells. Hepatology. 2010;51:297–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hannan NR, Segeritz CP, Touboul T, Vallier L. Production of hepatocyte-like cells from human pluripotent stem cells. Nat Protoc. 2013;8:430–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Takebe T, Sekine K, Enomura M, Koike H, Kimura M, Ogaeri T, et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature. 2013;499:481–4.

    Article  CAS  PubMed  Google Scholar 

  29. Liu H, Kim Y, Sharkis S, Marchionni L, Jang YY. In vivo liver regeneration potential of human induced pluripotent stem cells from diverse origins. Sci Transl Med. 2011; 3:82ra39.

  30. Zhao T, Zhang ZN, Rong Z, Xu Y. Immunogenicity of induced pluripotent stem cells. Nature. 2011;474:212–5.

    Article  CAS  PubMed  Google Scholar 

  31. Guha P, Morgan JW, Mostoslavsky G, Rodrigues NP, Boyd AS. Lack of immune response to differentiated cells derived from syngeneic induced pluripotent stem cells. Cell Stem Cell. 2013;12:407–12.

    Article  CAS  PubMed  Google Scholar 

  32. Carraro A, Flaibani M, Cillo U, Michelotto L, Magrofuoco E, Buggio M, et al. A combining method to enhance the in vitro differentiation of hepatic precursor cells. Tissue Eng Part C Methods. 2010;16:1543–51.

    Article  CAS  PubMed  Google Scholar 

  33. Irudayaswamy A, Muthiah M, Zhou L, Hung H, Jumat NHB, Haque J, et al. Long-term fate of human fetal liver progenitor cells transplanted in injured mouse livers. Stem Cells. 2018;36:103–13.

    Article  CAS  PubMed  Google Scholar 

  34. Takase HM, Itoh T, Ino S, Wang T, Koji T, Akira S, et al. FGF7 is a functional niche signal required for stimulation of adult liver progenitor cells that support liver regeneration. Genes Dev. 2013;27:169–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lu WY, Bird TG, Boulter L, Tsuchiya A, Cole AM, Hay T, et al. Hepatic progenitor cells of biliary origin with liver repopulation capacity. Nat Cell Biol. 2015;17:971–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Huch M, Dorrell C, Boj SF, van Es JH, Li VS, van de Wetering M, et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature. 2013;494:247–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Huch M, Gehart H, van Boxtel R, Hamer K, Blokzijl F, Verstegen MM, et al. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell. 2015;160:299–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tuan RS, Boland G, Tuli R. Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Res Ther. 2003;5:32–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu ZJ, Zhuge Y, Velazquez OC. Trafficking and differentiation of mesenchymal stem cells. J Cell Biochem. 2009;106:984–91.

    Article  CAS  PubMed  Google Scholar 

  40. Kobolak J, Dinnyes A, Memic A, Khademhosseini A, Mobasheri A. Mesenchymal stem cells: Identification, phenotypic characterization, biological properties and potential for regenerative medicine through biomaterial micro-engineering of their niche. Methods. 2016;99:62–8.

    Article  CAS  PubMed  Google Scholar 

  41. Augello A, Kurth TB, De Bari C. Mesenchymal stem cells: a perspective from in vitro cultures to in vivo migration and niches. Eur Cell Mater. 2010;20:121–33.

    Article  CAS  PubMed  Google Scholar 

  42. Porada CD, Zanjani ED, Almeida-Porada G. Adult mesenchymal stem cells: a pluripotent population with multiple applications. Curr Stem Cell Res Ther. 2006;1:365–9.

    Article  CAS  PubMed  Google Scholar 

  43. Dowidar MF, El-Belbasi HI, Ayoub AG, Rashed LA, Elged DW. Biochemical and molecular studies on bone marrow derived stromal stem cells on liver injuries in rats. Zag Vet J. 2017;45:355–65.

    Article  Google Scholar 

  44. Yin L, Zhu Y, Yang J, Ni Y, Zhou Z, Chen Y, et al. Adipose tissue-derived mesenchymal stem cells differentiated into hepatocyte-like cells in vivo and in vitro. Mol Med Rep. 2015;11:1722–32.

    Article  CAS  PubMed  Google Scholar 

  45. Lee SK, Lee SC, Kim SJ. A novel cell-free strategy for promoting mouse liver regeneration: utilization of a conditioned medium from adipose-derived stem cells. Hepatol Int. 2015;9:310–20.

    Article  PubMed  Google Scholar 

  46. Salama H, Zekri AR, Medhat E, Al Alim SA, Ahmed OS, Bahnassy AA, et al. Peripheral vein infusion of autologous mesenchymal stem cells in Egyptian HCV-positive patients with end-stage liver disease. Stem Cell Res Ther. 2014;5:70.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wang L, Han Q, Chen H, Wang K, Shan GL, Kong F, et al. Allogeneic bone marrow mesenchymal stem cell transplantation in patients with UDCA-resistant primary biliary cirrhosis. Stem Cells Dev. 2014;23:2482–9.

    Article  CAS  PubMed  Google Scholar 

  48. Jang YO, Kim YJ, Baik SK, Kim MY, Eom YW, Cho MY, et al. Histological improvement following administration of autologous bone marrow-derived mesenchymal stem cells for alcoholic cirrhosis: a pilot study. Liver Int. 2014;34:33–41.

    Article  CAS  PubMed  Google Scholar 

  49. Gómez-Aristizábal A, Keating A, Davies JE. Mesenchymal stromal cells as supportive cells for hepatocytes. Mol Ther. 2009;17:1504–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rebelo SP, Costa R, Silva MM, Marcelino P, Brito C, Alves PM. Three-dimensional co-culture of human hepatocytes and mesenchymal stem cells: improved functionality in long-term bioreactor cultures. J Tissue Eng Regen Med. 2017;11:2034–45.

    Article  CAS  PubMed  Google Scholar 

  51. Wang J, Zhu Z, Huang Y, Wang P, Luo Y, Gao Y, et al. The subtype CD200-positive, chorionic mesenchymal stem cells from the placenta promote regeneration of human hepatocytes. Biotechnol Lett. 2014;36:1335–41.

    Article  CAS  PubMed  Google Scholar 

  52. Fitzpatrick E, Wu Y, Dhadda P, Hughes RD, Mitry RR, Qin H, et al. Coculture with mesenchymal stem cells results in improved viability and function of human hepatocytes. Cell Transplant. 2015;24:73–83.

    Article  PubMed  Google Scholar 

  53. Lagasse E, Connors H, Al-Dhalimy M, Reitsma M, Dohse M, Osborne L, et al. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med. 2000;6:1229–34.

    Article  CAS  PubMed  Google Scholar 

  54. Lehwald N, Duhme C, Wildner M, Kuhn S, Fürst G, Forbes SJ, et al. HGF and SDF-1-mediated mobilization of CD 133+ BMSC for hepatic regeneration following extensive liver resection. Liver Int. 2014;34:89–101.

    Article  CAS  PubMed  Google Scholar 

  55. Körbling M, Katz RL, Khanna A, Ruifrok AC, Rondon G, Albitar M, et al. Hepatocytes and epithelial cells of donor origin in recipients of peripheral-blood stem cells. N Engl J Med. 2002;346:738–46.

    Article  PubMed  Google Scholar 

  56. Wan Z, You S, Rong Y, Zhu B, Zhang A, Zang H, et al. CD34+ hematopoietic stem cells mobilization, paralleled with multiple cytokines elevated in patients with HBV-related acute-on-chronic liver failure. Dig Dis Sci. 2013;58:448–57.

    Article  CAS  PubMed  Google Scholar 

  57. Kollet O, Shivtiel S, Chen YQ, Suriawinata J, Thung SN, Dabeva MD, et al. HGF, SDF-1, and MMP-9 are involved in stress-induced human CD34+ stem cell recruitment to the liver. J Clin Invest. 2003;112:160–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yannaki E, Athanasiou E, Xagorari A, Constantinou V, Batsis I, Kaloyannidis P, et al. G-CSF–primed hematopoietic stem cells or G-CSF per se accelerate recovery and improve survival after liver injury, predominantly by promoting endogenous repair programs. Exp Hematol. 2005;33:108–19.

    Article  CAS  PubMed  Google Scholar 

  59. Zekri AR, Salama H, Medhat E, Musa S, Abdel-Haleem H, Ahmed OS, et al. The impact of repeated autologous infusion of haematopoietic stem cells in patients with liver insufficiency. Stem Cell Res Ther. 2015;6:118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jang YY, Collector MI, Baylin SB, Diehl AM, Sharkis SJ. Hematopoietic stem cells convert into liver cells within days without fusion. Nat Cell Biol. 2004;6:532–9.

    Article  CAS  PubMed  Google Scholar 

  61. Newsome PN, Johannessen I, Boyle S, Dalakas E, McAulay KA, Samuel K, et al. Human cord blood-derived cells can differentiate into hepatocytes in the mouse liver with no evidence of cellular fusion. Gastroenterology. 2003;124:1891–900.

    Article  PubMed  Google Scholar 

  62. Vassilopoulos G, Wang PR, Russell DW. Transplanted bone marrow regenerates liver by cell fusion. Nature. 2003;422:901–4.

    Article  CAS  PubMed  Google Scholar 

  63. Alison MR, Poulsom R, Jeffery R, Dhillon AP, Quaglia A, Jacob J, et al. Cell differentiation: hepatocytes from non-hepatic adult stem cells. Nature. 2000;406:257.

    Article  CAS  PubMed  Google Scholar 

  64. Martínez Sarrà E. Characterization of dental pulp pluripotent-like stem cells (DPPSC) and their mesodermal differentiation potential. Doctoral dissertation, Universitat Internacional de Catalunya, Barcelona; 2017.

  65. Gil Recio C. Obtaining hepatocyte-like cells from dental pulppluripotent-like stem cells. Doctoral dissertation, Universitat Internacional de Catalunya, Barcelona; 2015.

  66. Fairhall EA, Wallace K, White SA, Huang GC, Shaw JA, Wright SC, et al. Adult human exocrine pancreas differentiation to hepatocytes–potential source of a human hepatocyte progenitor for use in toxicology research. Toxicol Res (Camb). 2013;2:80–7.

    Article  CAS  Google Scholar 

  67. Probert PM, Chung GW, Cockell SJ, Agius L, Mosesso P, White SA, et al. Utility of B-13 progenitor-derived hepatocytes in hepatotoxicity and genotoxicity studies. Toxicol Sci. 2014;137:350–70.

    Article  CAS  PubMed  Google Scholar 

  68. Wang RY, Shen CN, Lin MH, Tosh D, Shih C. Hepatocyte-like cells transdifferentiated from a pancreatic origin can support replication of hepatitis B virus. J Virol. 2005;79:13116–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wallace K, Fairhall EA, Charlton KA, Wright MC. AR42J-B-13 cell: an expandable progenitor to generate an unlimited supply of functional hepatocytes. Toxicology. 2010;278:277–87.

    Article  CAS  PubMed  Google Scholar 

  70. Rong Z, Wang M, Hu Z, Stradner M, Zhu S, Kong H, et al. An effective approach to prevent immune rejection of human ESC-derived allografts. Cell Stem Cell. 2014;14:121–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hynes RO. US policies on human embryonic stem cells. Nat Rev Mol Cell Biol. 2008;9:993–7.

    Article  CAS  PubMed  Google Scholar 

  72. Poulsom R, Alison MR, Forbes SJ, Wright NA. Adult stem cell plasticity. J Pathol. 2002;197:441–56.

    Article  PubMed  Google Scholar 

  73. Wang Y, Zhang Z, Chi Y, Zhang Q, Xu F, Yang Z, et al. Long-term cultured mesenchymal stem cells frequently develop genomic mutations but do not undergo malignant transformation. Cell Death Dis. 2013;4:e950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Oishi K, Noguchi H, Yukawa H, Hayashi S. Differential ability of somatic stem cells. Cell Transplant. 2009;18:581–9.

    Article  PubMed  Google Scholar 

  75. Cawthorn WP, Scheller EL, MacDougald OA. Adipose tissue stem cells meet preadipocyte commitment: going back to the future. J Lipid Res. 2012;53:227–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Touboul T, Hannan NR, Corbineau S, Martinez A, Martinet C, Branchereau S, et al. Generation of functional hepatocytes from human embryonic stem cells under chemically defined conditions that recapitulate liver development. Hepatology. 2010;51:1754–65.

    Article  CAS  PubMed  Google Scholar 

  77. Siller R, Greenhough S, Naumovska E, Sullivan GJ. Small-molecule-driven hepatocyte differentiation of human pluripotent stem cells. Stem cell Reports. 2015;4:939–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Toivonen S, Lundin K, Balboa D, Ustinov J, Tamminen K, Palgi J, et al. Activin A and Wnt-dependent specification of human definitive endoderm cells. Exp Cell Res. 2013;319:2535–44.

    Article  CAS  PubMed  Google Scholar 

  79. Borowiak M, Maehr R, Chen S, Chen AE, Tang W, Fox JL, et al. Small molecules efficiently direct endodermal differentiation of mouse and human embryonic stem cells. Cell Stem Cell. 2009;4:348–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Takayama K, Inamura M, Kawabata K, Katayama K, Higuchi M, Tashiro K, et al. Efficient generation of functional hepatocytes from human embryonic stem cells and induced pluripotent stem cells by HNF4α transduction. Mol Ther. 2012;20:127–37.

    Article  CAS  PubMed  Google Scholar 

  81. Zhou M, Li P, Tan L, Qu S, Ying QL, Song H. Differentiation of mouse embryonic stem cells into hepatocytes induced by a combination of cytokines and sodium butyrate. J Cell Biochem. 2010;109:606–14.

    Article  CAS  PubMed  Google Scholar 

  82. Du C, Feng Y, Qiu D, Xu Y, Pang M, Cai N, et al. Highly efficient and expedited hepatic differentiation from human pluripotent stem cells by pure small-molecule cocktails. Stem Cell Res Ther. 2018;9:58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Baxter M, Withey S, Harrison S, Segeritz CP, Zhang F, Atkinson-Dell R, et al. Phenotypic and functional analyses show stem cell-derived hepatocyte-like cells better mimic fetal rather than adult hepatocytes. J Hepatol. 2015;62:581–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Schwartz RE, Fleming HE, Khetani SR, Bhatia SN. Pluripotent stem cell-derived hepatocyte-like cells. Biotechnol Adv. 2014;32:504–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Meng Q. Three-dimensional culture of hepatocytes for prediction of drug-induced hepatotoxicity. Expert Opin Drug Metab Toxicol. 2010;6:733–46.

    Article  CAS  PubMed  Google Scholar 

  86. Nath S, Devi GR. Three-dimensional culture systems in cancer research: Focus on tumor spheroid model. Pharmacol Ther. 2016;163:94–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Shamir ER, Ewald AJ. Three-dimensional organotypic culture: experimental models of mammalian biology and disease. Nat Rev Mol Cell Biol. 2014;15:647–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kim SE, An SY, Woo DH, Han J, Kim JH, Jang YJ, et al. Engraftment potential of spheroid-forming hepatic endoderm derived from human embryonic stem cells. Stem Cells Dev. 2013;22:1818–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ravi M, Paramesh V, Kaviya SR, Anuradha E, Solomon FP. 3D cell culture systems: advantages and applications. J Cell Physiol. 2015;230:16–26.

    Article  CAS  PubMed  Google Scholar 

  90. Kim JH, Jang YJ, An SY, Son J, Lee J, Lee G, et al. Enhanced metabolizing activity of human ES cell-derived hepatocytes using a 3D culture system with repeated exposures to xenobiotics. Toxicol Sci. 2015;147:190–206.

    Article  CAS  PubMed  Google Scholar 

  91. Ramaiahgari SC, den Braver MW, Herpers B, Terpstra V, Commandeur JN, van de Water B, et al. A 3D in vitro model of differentiated HepG2 cell spheroids with improved liver-like properties for repeated dose high-throughput toxicity studies. Arch Toxicol. 2014;88:1083–95.

    CAS  PubMed  Google Scholar 

  92. Cipriano M, Freyer N, Knöspel F, Oliveira NG, Barcia R, Cruz PE, et al. Self-assembled 3D spheroids and hollow-fibre bioreactors improve MSC-derived hepatocyte-like cell maturation in vitro. Arch Toxicol. 2017;91:1815–32.

    Article  CAS  PubMed  Google Scholar 

  93. Garnier D, Li R, Delbos F, Fourrier A, Collet C, Guguen-Guillouzo C, et al. Expansion of human primary hepatocytes in vitro through their amplification as liver progenitors in a 3D organoid system. Sci Rep. 2018;8:8222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Vosough M, Omidinia E, Kadivar M, Shokrgozar MA, Pournasr B, Aghdami N, et al. Generation of functional hepatocyte-like cells from human pluripotent stem cells in a scalable suspension culture. Stem Cells Dev. 2013;22:2693–705.

    Article  CAS  PubMed  Google Scholar 

  95. Kang A, Park J, Ju J, Jeong GS, Lee SH. Cell encapsulation via microtechnologies. Biomaterials. 2014;35:2651–63.

    Article  CAS  PubMed  Google Scholar 

  96. Hashemi M, Kalalinia F. Application of encapsulation technology in stem cell therapy. Life Sci. 2015;143:139–46.

    Article  CAS  PubMed  Google Scholar 

  97. Meier RP, Montanari E, Morel P, Pimenta J, Schuurman HJ, Wandrey C, et al. Microencapsulation of hepatocytes and mesenchymal stem cells for therapeutic applications. Methods Mol Biol. 2017;1506:259–71.

    Article  CAS  PubMed  Google Scholar 

  98. Meier RP, Mahou R, Morel P, Meyer J, Montanari E, Muller YD, et al. Microencapsulated human mesenchymal stem cells decrease liver fibrosis in mice. J Hepatol. 2015;62:634–41.

    Article  CAS  PubMed  Google Scholar 

  99. Hu AB, Cai JY, Zheng QC, He XQ, Shan Y, Pan YL, et al. High-ratio differentiation of embryonic stem cells into hepatocytes in vitro. Liver Int. 2004;24:237–45.

    Article  PubMed  Google Scholar 

  100. Duan Y, Catana A, Meng Y, Yamamoto N, He S, Gupta S, et al. Differentiation and enrichment of hepatocyte-like cells from human embryonic stem cells in vitro and in vivo. Stem Cells. 2007;25:3058–68.

    Article  CAS  PubMed  Google Scholar 

  101. Kuai XL, Bian YH, Cong XQ, Li XL, Xiao SD. Differentiation of mouse embryonic stem cells into hepatocytes in vitro and in vivo. J Dig Dis. 2003;4:75–80.

    Google Scholar 

  102. Choi D, Oh HJ, Chang UJ, Koo SK, Jiang JX, Hwang SY, et al. In vivo differentiation of mouse embryonic stem cells into hepatocytes. Cell Transplant. 2002;11:359–68.

    Article  PubMed  Google Scholar 

  103. Kharaziha P, Hellström PM, Noorinayer B, Farzaneh F, Aghajani K, Jafari F, et al. Improvement of liver function in liver cirrhosis patients after autologous mesenchymal stem cell injection: a phase I-II clinical trial. Eur J Gastroenterol Hepatol. 2009;21:1199–205.

    Article  CAS  PubMed  Google Scholar 

  104. Sakai Y, Takamura M, Seki A, Sunagozaka H, Terashima T, Komura T, et al. Phase I clinical study of liver regenerative therapy for cirrhosis by intrahepatic arterial infusion of freshly isolated autologous adipose tissue-derived stromal/stem (regenerative) cell. Regen Ther. 2017;6:52–64.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Shi M, Liu Z, Wang Y, Xu R, Sun Y, Zhang M, et al. A pilot study of mesenchymal stem cell therapy for acute liver allograft rejection. Stem Cells Transl Med. 2017;6:2053–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. El-Ansary M, Abdel-Aziz I, Mogawer S, Abdel-Hamid S, Hammam O, Teaema S, et al. Phase II trial: undifferentiated versus differentiated autologous mesenchymal stem cells transplantation in Egyptian patients with HCV induced liver cirrhosis. Stem Cell Rev. 2012;8:972–81.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Fund of the People’s Republic of China (No. 81771304), the National Natural Science Youth Fund of the People’s Republic of China (No. 81601234 and No. 81601073), and the Health Special Fund of Jilin Province, China (SCZSY201616) and the Science and Technology Innovation Development Fund of Jilin (No. 201750246).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miao Li.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Ethical approval

There are no animal experiments carried out for this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Sun, M., Liu, W. et al. Stem Cell-Based Therapies for Liver Diseases: An Overview and Update. Tissue Eng Regen Med 16, 107–118 (2019). https://doi.org/10.1007/s13770-019-00178-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-019-00178-y

Keywords

Navigation