Skip to main content
Log in

Implantation of Bone Marrow Stromal Cell Sheets Derived from Old Donors Supports Bone Tissue Formation

  • Original Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

The purpose of this study was to evaluate the osteogenesis ability of osteogenic matrix cell sheets (OMCS) derived from old donor cells. Bone marrow stromal cells (BMSC) were obtained from young (7-week-old) and old (1-year-old) Fischer344 rats donors and cultured with modified Eagle’s medium (MEM group) alone or containing dexamethasone (Dex; 10 nM) and ascorbic acid phosphate (AscP; 0.28 mM) (Dex/AscP group). We prepared four in vitro experimental groups: (1) young MEM, (2) young Dex/AscP, (3) old MEM and (4) old Dex/AscP. Cell proliferation and osteogenic marker mRNA expression levels were evaluated in vitro. To assess bone formation in vivo, the cells of each group were combined with beta tricalcium phosphate (TCP) disks followed by implantation in recipient rats. The in vitro study showed significant differences in the mRNA expression of osteocalcin, ALP, and BMP2 between MEM and Dex/AscP groups. Bone formation following implantation was observed upon histological analyses of all groups. TCP combined with OMCS (OMCS/TCP group) resulted in enhanced bone formation compared to that following combination with BMSC (BMSC/TCP). The osteocalcin content of the OMCS/TCP group 4 weeks after implantation was significantly higher than that in the BMSC/TCP construct for both young and old donors. The present study clearly indicated that OMCS could be generated from BMSCs of old as well as young donors using a mechanical retrieval method. Thus, through its usage of OMCS, this method may represent a potentially effective therapeutic option for cell-based therapy in elderly patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kawate K, Yajima H, Ohgushi H, Kotobuki N, Sugimoto K, Ohmura T, et al. Tissue-engineered approach for the treatment of steroid-induced osteonecrosis of the femoral head: transplantation of autologous mesenchymal stem cells cultured with beta-tricalcium phosphate ceramics and free vascularized fibula. Artif Organs. 2006;30:960–2.

    Article  CAS  PubMed  Google Scholar 

  2. Zhao X, Hwang NS, Bichara DA, Saris DB, Malda J, Vacanti JP, et al. Chondrogenesis by bone marrow-derived mesenchymal stem cells grown in chondrocyte-conditioned medium for auric-ular reconstruction. J Tissue Eng Regen Med. 2016. Jun 3 [Epub]. doi:10.1002/term.2171.

  3. Ohgushi H, Caplan AI. Stem cell technology and bioceramics: from cell to gene engineering. J Biomed Mater Res. 1999;48:913–27.

    Article  CAS  PubMed  Google Scholar 

  4. Brazelton TR, Rossi FM, Keshet GI, Blau HM. From marrow to brain: expression of neuronal phenotypes in adult mice. Science. 2000;290:1775–9.

    Article  CAS  PubMed  Google Scholar 

  5. Squillaro T, Peluso G, Galderisi U. Clinical trials with mesenchymal stem cells: an update. Cell Transplant. 2016;25:829–48.

    Article  PubMed  Google Scholar 

  6. Jorgensen C, Noel D. Mesenchymal stem cells in osteoarticular diseases. Regen Med. 2011;6:44–51.

    Article  CAS  PubMed  Google Scholar 

  7. Inoue K, Ohgushi H, Yoshikawa T, Okumura M, Sempuku T, Tamai S, et al. The effect of aging on bone formation in porous hydroxyapatite: biochemical and histological analysis. J Bone Miner Res. 1997;12:989–94.

    Article  CAS  PubMed  Google Scholar 

  8. Bianco P, Robey PG. Stem cells in tissue engineering. Nature. 2001;414:118–21.

    Article  CAS  PubMed  Google Scholar 

  9. Akahane M, Shimizu T, Kira T, Onishi T, Uchihara Y, Imamura T, et al. Culturing bone marrow cells with dexamethasone and ascorbic acid improves osteogenic cell sheet structure. Bone Joint Res. 2016;5:569–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pirraco RP, Obokata H, Iwata T, Marques AP, Tsuneda S, Yamato M, et al. Development of osteogenic cell sheets for bone tissue engineering applications. Tissue Eng Part A. 2011;17:1507–15.

    Article  CAS  PubMed  Google Scholar 

  11. Iwata T, Washio K, Yoshida T, Ishikawa I, Ando T, Yamato M, et al. Cell sheet engineering and its application for periodontal regeneration. J Tissue Eng Regen Med. 2015;9:343–56.

    Article  CAS  PubMed  Google Scholar 

  12. Ma D, Ren L, Liu Y, Chen F, Zhang J, Xue Z, et al. Engineering scaffold-free bone tissue using bone marrow stromal cell sheets. J Orthop Res. 2010;28:697–702.

    CAS  PubMed  Google Scholar 

  13. Akahane M, Nakamura A, Ohgushi H, Shigematsu H, Dohi Y, Takakura Y. Osteogenic matrix sheet-cell transplantation using osteoblastic cell sheet resulted in bone formation without scaffold at an ectopic site. J Tissue Eng Regen Med. 2008;2:196–201.

    Article  CAS  PubMed  Google Scholar 

  14. Ueyama Y, Yagyuu T, Maeda M, Imada M, Akahane M, Kawate K, et al. Maxillofacial bone regeneration with osteogenic matrix cell sheets: an experimental study in rats. Arch Oral Biol. 2016;72:138–45.

    Article  CAS  PubMed  Google Scholar 

  15. Shimizu T, Akahane M, Morita Y, Omokawa S, Nakano K, Kira T, et al. The regeneration and augmentation of bone with injectable osteogenic cell sheet in a rat critical fracture healing model. Injury. 2015;46:1457–64.

    Article  PubMed  Google Scholar 

  16. Inagaki Y, Uematsu K, Akahane M, Morita Y, Ogawa M, Ueha T, et al. Osteogenic matrix cell sheet transplantation enhances early tendon graft to bone tunnel healing in rabbits. Biomed Res Int. 2013;2013:842192.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Akahane M, Maeyashiki A, Yoshihara S, Tanaka Y, Imamura T. Relationship between difficulties in daily activities and falling: loco-check as a self-assessment of fall risk. Interact J Med Res. 2016;5:e20.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Almeida M, O’Brien CA. Basic biology of skeletal aging: role of stress response pathways. J Gerontol A Biol Sci Med Sci. 2013;68:1197–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stenderup K, Justesen J, Clausen C, Kassem M. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone. 2003;33:919–26.

    Article  PubMed  Google Scholar 

  20. Lu C, Hansen E, Sapozhnikova A, Hu D, Miclau T, Marcucio RS. Effect of age on vascularization during fracture repair. J Orthop Res. 2008;26:1384–9.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mueller SM, Glowacki J. Age-related decline in the osteogenic potential of human bone marrow cells cultured in three-dimensional collagen sponges. J Cell Biochem. 2001;82:583–90.

    Article  CAS  PubMed  Google Scholar 

  22. Mendes SC, Tibbe JM, Veenhof M, Bakker K, Both S, Platenburg PP, et al. Bone tissue-engineered implants using human bone marrow stromal cells: effect of culture conditions and donor age. Tissue Eng. 2002;8:911–20.

    Article  CAS  PubMed  Google Scholar 

  23. Nakamura A, Akahane M, Shigematsu H, Tadokoro M, Morita Y, Ohgushi H, et al. Cell sheet transplantation of cultured mesenchymal stem cells enhances bone formation in a rat nonunion model. Bone. 2010;46:418–24.

    Article  CAS  PubMed  Google Scholar 

  24. Kira T, Omokawa S, Akahane M, Shimizu T, Nakano K, Nakanishi Y, et al. Effectiveness of bone marrow stromal cell sheets in maintaining random-pattern skin flaps in an experimental animal model. Plast Reconstr Surg. 2015;136:624–32.

    Article  Google Scholar 

  25. Ueha T, Akahane M, Shimizu T, Uchihara Y, Morita Y, Nitta N, et al. Utility of tricalcium phosphate and osteogenic matrix cell sheet constructs for bone defect reconstruction. World J Stem Cells. 2015;7:873–82.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Nakano K, Murata K, Omokawa S, Akahane M, Shimizu T, Kawamura K, et al. Promotion of osteogenesis and angiogenesis in vascularized tissue-engineered bone using osteogenic matrix cell sheets. Plast Reconstr Surg. 2016;137:1476–84.

    Article  CAS  PubMed  Google Scholar 

  27. Prior JC, Langsetmo L, Lentle BC, Berger C, Goltzman D, Kovacs CS, et al. Ten-year incident osteoporosis-related fractures in the population-based Canadian multicentre osteoporosis study—comparing site and age-specific risks in women and men. Bone. 2015;71:237–43.

    Article  PubMed  Google Scholar 

  28. Kasper G, Mao L, Geissler S, Draycheva A, Trippens J, Kühnisch J, et al. Insights into mesenchymal stem cell aging: involvement of antioxidant defense and actin cytoskeleton. Stem Cells. 2009;27:1288–97.

    Article  CAS  PubMed  Google Scholar 

  29. Hauschka PV, Mavrakos AE, Iafrati MD, Doleman SE, Klagsbrun M. Growth factors in bone matrix. Isolation of multiple types by affinity chromatography on heparin-Sepharose. J Biol Chem. 1986;261:12665–74.

    CAS  PubMed  Google Scholar 

  30. Mohan S, Baylink DJ. Serum insulin-like growth factor binding protein (IGFBP)-4 and IGFBP-5 levels in aging and age-associated diseases. Endocrine. 1997;7:87–91.

    Article  CAS  PubMed  Google Scholar 

  31. Hausman MR, Schaffler MB, Majeska RJ. Prevention of fracture healing in rats by an inhibitor of angiogenesis. Bone. 2001;29:560–4.

    Article  CAS  PubMed  Google Scholar 

  32. Zigdon-Giladi H, Rudich U, Michaeli Geller G, Evron A. Recent advances in bone regeneration using adult stem cells. World J Stem Cells. 2015;7:630–40.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Chen HT, Lee MJ, Chen CH, Chuang SC, Chang LF, Ho ML, et al. Proliferation and differentiation potential of human adipose-derived mesenchymal stem cells isolated from elderly patients with osteoporotic fractures. J Cell Mol Med. 2012;16:582–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Song IH, Caplan AI, Dennis JE. Dexamethasone inhibition of confluence-induced apoptosis in human mesenchymal stem cells. J Orthop Res. 2009;27:216–21.

    Article  PubMed  Google Scholar 

  35. Wang H, Pang B, Li Y, Zhu D, Pang T, Liu Y. Dexamethasone has variable effects on mesenchymal stromal cells. Cytotherapy. 2012;14:423–30.

    Article  CAS  PubMed  Google Scholar 

  36. Choi KM, Seo YK, Yoon HH, Song KY, Kwon SY, Lee HS, et al. Effect of ascorbic acid on bone marrow-derived mesenchymal stem cell proliferation and differentiation. J Biosci Bioeng. 2008;105:586–94.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. T. Ueha for conducting a part of animal experiments and Dr. K. Kawate for interpretation of results. We also thank F. Kunda and M. Matsumura (Nara Medical University Faculty of Medicine, Japan) for their technical assistance. This study was partially supported by a Grant-in-Aid for Young Scientists (B).

Author information

Authors and Affiliations

Authors

Contributions

MA designed this study and wrote the first draft of the manuscript. TS and TK conducted animal experiments. TE, AO, and TO conducted biological analyses. YI, TI, and YT jointly interpreted the results.

Corresponding author

Correspondence to Manabu Akahane.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to disclose.

Ethical statement

All experimental protocols using animals were approved by the Animal Experimental Review Board of Nara Medical University (IRB No. 11345) prior to initiating the experiments. The animals were housed in a temperature-controlled environment at approximately 21 °C under a 12 h light/12 h dark cycle with free access to food and water.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akahane, M., Shimizu, T., Inagaki, Y. et al. Implantation of Bone Marrow Stromal Cell Sheets Derived from Old Donors Supports Bone Tissue Formation. Tissue Eng Regen Med 15, 89–100 (2018). https://doi.org/10.1007/s13770-017-0088-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-017-0088-4

Keywords

Navigation