Skip to main content
Log in

Synergistic Effect of Cold Plasma Treatment and RGD Peptide Coating on Cell Proliferation over Titanium Surfaces

  • Original Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

The aim of this study was to investigate the synergistic effect of cold atmospheric plasma (CAP) treatment and RGD peptide coating for enhancing cellular attachment and proliferation over titanium (Ti) surfaces. The surface structure of CAP-treated and RGD peptide-coated Ti discs were characterized by contact angle goniometer and atomic force microscopy. The effect of such surface modification on human bone marrow derived mesenchymal stem cells (hMSCs) adhesion and proliferation was assessed by cell proliferation and DNA content assays. Besides, hMSCs’ adhesion and morphology on surface modified Ti discs were observed via fluorescent and scanning electron microscopy. RGD peptide coating following CAP treatment significantly enhanced cellular adhesion and proliferation among untreated, CAP-treated and RGD peptide-coated Ti discs. The treatment of Ti surfaces with CAP may contribute to improved RGD peptide coating, which enables increased cellular integrations with the Ti surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Raphel J, Karlsson J, Galli S, Wennerberg A, Lindsay C, Haugh MG, et al. Engineered protein coatings to improve the osseointegration of dental and orthopaedic implants. Biomaterials. 2016;83:269–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zafar MS, Khurshid Z, Almas K. Oral tissue engineering progress and challenges. Tissue Eng Regen Med. 2015;12:387–97.

    Article  CAS  Google Scholar 

  3. Schwartz-Arad D, Kidron N, Dolev E. A long-term study of implants supporting overdentures as a model for implant success. J Periodontol. 2005;76:1431–5.

    Article  PubMed  Google Scholar 

  4. Karoussis IK, Brägger U, Salvi GE, Bürgin W, Lang NP. Effect of implant design on survival and success rates of titanium oral implants: a 10-year prospective cohort study of the ITI dental implant system. Clin Oral Implants Res. 2004;15:8–17.

    Article  PubMed  Google Scholar 

  5. Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci. 2009;54:397–425.

    Article  CAS  Google Scholar 

  6. Schliephake H, Scharnweber D. Chemical and biological functionalization of titanium for dental implants. J Mater Chem. 2008;18:2404–14.

    Article  CAS  Google Scholar 

  7. Goodman SB, Yao Z, Keeney M, Yang F. The future of biologic coatings for orthopaedic implants. Biomaterials. 2013;34:3174–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brånemark PI, Adell R, Breine U, Hansson BO, Lindström J, Ohlsson A. Intra-osseous anchorage of dental prostheses. I. Experimental studies. Scand J Plast Reconstr Surg. 1969;3:81–100.

    Article  PubMed  Google Scholar 

  9. Albrektsson T, Brånemark PI, Hansson HA, Lindström J. Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand. 1981;52:155–70.

    Article  CAS  PubMed  Google Scholar 

  10. Klein MO, Bijelic A, Ziebart T, Koch F, Kämmerer PW, Wieland M, et al. Submicron scale-structured hydrophilic titanium surfaces promote early osteogenic gene response for cell adhesion and cell differentiation. Clin Implant Dent Relat Res. 2013;15:166–75.

    Article  PubMed  Google Scholar 

  11. Le Guehennec L, Lopez-Heredia MA, Enkel B, Weiss P, Amouriq Y, Layrolle P. Osteoblastic cell behaviour on different titanium implant surfaces. Acta Biomater. 2008;4:535–43.

    Article  PubMed  Google Scholar 

  12. Puleo D, Nanci A. Understanding and controlling the bone–implant interface. Biomaterials. 1999;20:2311–21.

    Article  CAS  PubMed  Google Scholar 

  13. Buser D, Broggini N, Wieland M, Schenk RK, Denzer AJ, Cochran DL, et al. Enhanced bone apposition to a chemically modified SLA titanium surface. J Dent Res. 2004;83:529–33.

    Article  CAS  PubMed  Google Scholar 

  14. Buser D. Titanium for dental applications (II): implants with roughened surfaces. In: Brunette DM, Tengvall P, Textor M, Thomsen P, editors. Titanium in medicine. Berlin: Springer; 2001. p. 875–88.

  15. Boyan BD, Dean DD, Lohmann CH, Cochran DL, Sylvia VL, Schwartz Z. The titanium-bone cell interface in vitro: the role of the surface in promoting osteointegration. In: Brunette DM, Tengvall P, Textor M, Thomsen P, editors. Titanium in medicine. Berlin: Springer; 2001. p. 561–85.

  16. Boyan BD, Lohmann CH, Dean DD, Sylvia VL, Cochran DL, Schwartz Z. Mechanisms involved in osteoblast response to implant surface morphology. Annu Rev Mater Res. 2001;31:357–71.

    Article  CAS  Google Scholar 

  17. Cochran DL, Buser D, Ten Bruggenkate CM, Weingart D, Taylor TM, Bernard JP, et al. The use of reduced healing times on ITI® implants with a sandblasted and acid-etched (SLA) surface. Clin Oral Implants Res. 2002;13:144–53.

    Article  PubMed  Google Scholar 

  18. Roccuzzo M, Bunino M, Prioglio F, Bianchi SD. Early loading of sandblasted and acid-etched (SLA) implants: a prospective split-mouth comparative study. Clin Oral Implants Res. 2001;12:572–8.

    Article  CAS  PubMed  Google Scholar 

  19. Rupp F, Scheideler L, Eichler M, Geis-Gerstorfer J. Wetting behavior of dental implants. Int J Oral Maxillofac Implants. 2011;26:1256–66.

    PubMed  Google Scholar 

  20. Hirakawa Y, Jimbo R, Shibata Y, Watanabe I, Wennerberg A, Sawase T. Accelerated bone formation on photo-induced hydrophilic titanium implants: an experimental study in the dog mandible. Clin Oral Implants Res. 2013;24:139–44.

    Article  PubMed  Google Scholar 

  21. Lang NP, Salvi GE, Huynh-Ba G, Ivanovski S, Donos N, Bosshardt DD. Early osseointegration to hydrophilic and hydrophobic implant surfaces in humans. Clin Oral Implants Res. 2011;22:349–56.

    Article  PubMed  Google Scholar 

  22. Bornstein MM, Valderrama P, Jones AA, Wilson TG, Seibl R, Cochran DL. Bone apposition around two different sandblasted and acid-etched titanium implant surfaces: a histomorphometric study in canine mandibles. Clin Oral Implants Res. 2008;19:233–41.

    Article  PubMed  Google Scholar 

  23. Ferguson SJ, Broggini N, Wieland M, de Wild M, Rupp F, Geis-Gerstorfer J, et al. Biomechanical evaluation of the interfacial strength of a chemically modified sandblasted and acid-etched titanium surface. J Biomed Mater Res A. 2006;78:291–7.

    Article  CAS  PubMed  Google Scholar 

  24. Narayanan R, Kim SY, Kwon TY, Kim KH. Nanocrystalline hydroxyapatite coatings from ultrasonated electrolyte: preparation, characterization, and osteoblast responses. J Biomed Mater Res A. 2008;87:1053–60.

    Article  CAS  PubMed  Google Scholar 

  25. Takeuchi M, Abe Y, Yoshida Y, Nakayama Y, Okazaki M, Akagawa Y. Acid pretreatment of titanium implants. Biomaterials. 2003;24:1821–7.

    Article  CAS  PubMed  Google Scholar 

  26. Kim MH, Lee SY, Kim MJ, Kim SK, Heo SJ, Koak JY. Effect of biomimetic deposition on anodized titanium surfaces. J Dent Res. 2011;90:711–6.

    Article  CAS  PubMed  Google Scholar 

  27. Tavares MG, de Oliveira PT, Nanci A, Hawthorne AC, Rosa AL, Xavier SP. Treatment of a commercial, machined surface titanium implant with H2SO4/H2O2 enhances contact osteogenesis. Clin Oral Implants Res. 2007;18:452–8.

    Article  PubMed  Google Scholar 

  28. Ibis F, Oflaz H, Ercan UK. Biofilm Inactivation and prevention on common implant material surfaces by nonthermal DBD plasma treatment. Plasma Med. 2016;6:33–45.

    Article  Google Scholar 

  29. Shohet JL. Plasma-aided manufacturing. IEEE Trans Plasma Sci IEEE Nucl Plasma Sci Soc. 1991;19:725–33.

    Article  CAS  Google Scholar 

  30. Germanier Y, Tosatti S, Broggini N, Textor M, Buser D. Enhanced bone apposition around biofunctionalized sandblasted and acid-etched titanium implant surfaces. Clin Oral Implants Res. 2006;17:251–7.

    Article  PubMed  Google Scholar 

  31. Ritts AC, Li H, Yu Q, Xu C, Yao X, Hong L, et al. Dentin surface treatment using a non-thermal argon plasma brush for interfacial bonding improvement in composite restoration. Eur J Oral Sci. 2010;118:510–6.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rezania A, Healy KE. Biomimetic peptide surfaces that regulate adhesion, spreading, cytoskeletal organization, and mineralization of the matrix deposited by osteoblast-like cells. Biotechnol Prog. 1999;15:19–32.

    Article  CAS  PubMed  Google Scholar 

  33. Smeets R, Stadlinger B, Schwarz F, Beck-Broichsitter B, Jung O, Precht C, et al. Impact of dental implant surface modifications on osseointegration. Biomed Res Int. 2016;2016:6285620.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Porté-Durrieu MC, Labrugère C, Villars F, Lefebvre F, Dutoya S, Guette A, et al. Development of RGD peptides grafted onto silica surfaces: XPS characterization and human endothelial cell interactions. J Biomed Mater Res. 1999;46:368–75.

    Article  PubMed  Google Scholar 

  35. Olivieri MP, Tweden KS. Human serum albumin and fibrinogen interactions with an adsorbed RGD-containing peptide. J Biomed Mater Res. 1999;46:355–9.

    Article  CAS  PubMed  Google Scholar 

  36. Schliephake H, Scharnweber D, Dard M, Rössler S, Sewing A, Meyer J, et al. Effect of RGD peptide coating of titanium implants on periimplant bone formation in the alveolar crest. An experimental pilot study in dogs. Clin Oral Implants Res. 2002;13:312–9.

    Article  PubMed  Google Scholar 

  37. Park SY, Kim HS, Kim JH, Shim JH, Yun MJ, Jeon YC, et al. Effects of anodized titanium implant coated with RGD peptides via chemical fixation on osseointegration and bone regeneration. Tissue Eng Regen Med. 2012;9:194–202.

    Article  CAS  Google Scholar 

  38. Yang GL, He FM, Yang XF, Wang XX, Zhao SF. In vivo evaluation of bone-bonding ability of RGD-coated porous implant using layer-by-layer electrostatic self-assembly. J Biomed Mater Res A. 2009;90:175–85.

    Article  PubMed  Google Scholar 

  39. He X, Jabbari E. Solid-phase synthesis of reactive peptide crosslinker by selective deprotection. Protein Pept Lett. 2006;13:715–8.

    Article  CAS  PubMed  Google Scholar 

  40. Karaman O, Kumar A, Moeinzadeh S, He X, Cui T, Jabbari E. Effect of surface modification of nanofibres with glutamic acid peptide on calcium phosphate nucleation and osteogenic differentiation of marrow stromal cells. J Tissue Eng Regen Med. 2016;10:E132–46.

    Article  CAS  PubMed  Google Scholar 

  41. Zhao BH, Tian WM, Feng HL, Lee IS, Cui FZ. Effects of RGD peptide grafting to titanium dental implants on the adhesion of human gingival fibroblasts and epithelial cells. Curr Appl Phys. 2005;5:407–10.

    Article  Google Scholar 

  42. Hearn MT. 1, 1′-Carbonyldiimidazole-mediated immobilization of enzymes and affinity ligands. Methods Enzymol. 1987;135:102–17.

    Article  CAS  PubMed  Google Scholar 

  43. Seo HS, Ko YM, Shim JW, Lim YK, Kook JK, Cho DL, et al. Characterization of bioactive RGD peptide immobilized onto poly(acrylic acid) thin films by plasma polymerization. Appl Surf Sci. 2010;257:596–602.

    Article  CAS  Google Scholar 

  44. Karimi T, Barati D, Karaman O, Moeinzadeh S, Jabbari E. A developmentally inspired combined mechanical and biochemical signaling approach on zonal lineage commitment of mesenchymal stem cells in articular cartilage regeneration. Integr Biol (Camb). 2015;7:112–27.

    Article  PubMed Central  Google Scholar 

  45. He X, Ma J, Jabbari E. Effect of grafting RGD and BMP-2 protein-derived peptides to a hydrogel substrate on osteogenic differentiation of marrow stromal cells. Langmuir. 2008;24:12508–16.

    Article  CAS  PubMed  Google Scholar 

  46. Choi SH, Jeong WS, Cha JY, Lee JH, Yu HS, Choi EH, et al. Time-dependent effects of ultraviolet and nonthermal atmospheric pressure plasma on the biological activity of titanium. Sci Rep. 2016;6:33421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Akkan CK, Hür D, Uzun L, Garipcan B. Amino acid conjugated self assembling molecules for enhancing surface wettability of fiber laser treated titanium surfaces. Appl Surf Sci. 2016;366:284–91.

    Article  CAS  Google Scholar 

  48. Guastaldi FP, Yoo D, Marin C, Jimbo R, Tovar N, Zanetta-Barbosa D, et al. Plasma treatment maintains surface energy of the implant surface and enhances osseointegration. Int J Biomater. 2013;2013:354125.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Katz J, Gershman S, Belkind A. Optical emission spectroscopy and contact angle study of plasma cleaning of titanium alloy surfaces: argon plasma. Plasma Med. 2015;5:223–36.

    Article  Google Scholar 

  50. Duske K, Koban I, Kindel E, Schröder K, Nebe B, Holtfreter B, et al. Atmospheric plasma enhances wettability and cell spreading on dental implant metals. J Clin Periodontol. 2012;39:400–7.

    Article  CAS  PubMed  Google Scholar 

  51. Lee EJ, Kwon JS, Uhm SH, Kim KM, Kim KN, Kim YH, et al., editors. Effect of non-thermal atmospheric pressure plasma jet on hydrophilicity and cellular activity of SLA-treated titanium surface. In: 2012 Abstracts IEEE international conference on plasma science, 2012 8–13 July; 2012.

  52. Horbett TA, Waldburger JJ, Ratner BD, Hoffman AS. Cell adhesion to a series of hydrophilic-hydrophobic copolymers studied with a spinning disc apparatus. J Biomed Mater Res. 1988;22:383–404.

    Article  CAS  PubMed  Google Scholar 

  53. Fridman G, Friedman G, Gutsol A, Shekhter AB, Vasilets VN, Fridman A. Applied plasma medicine. Plasma Process Polym. 2008;5:503–33.

    Article  CAS  Google Scholar 

  54. Jia S, Zhang Y, Ma T, Chen H, Lin Y. Enhanced hydrophilicity and protein adsorption of titanium surface by sodium bicarbonate solution. J Nanomater. 2015;2015:536801.

    Google Scholar 

  55. Milleret V, Tugulu S, Schlottig F, Hall H. Alkali treatment of microrough titanium surfaces affects macrophage/monocyte adhesion, platelet activation and architecture of blood clot formation. Eur Cell Mater. 2011;21:430–44.

    Article  CAS  PubMed  Google Scholar 

  56. Tugulu S, Löwe K, Scharnweber D, Schlottig F. Preparation of superhydrophilic microrough titanium implant surfaces by alkali treatment. J Mater Sci Mater Med. 2010;21:2751–63.

    Article  CAS  PubMed  Google Scholar 

  57. Wei J, Igarashi T, Okumori N, Igarashi T, Maetani T, Liu B, et al. Influence of surface wettability on competitive protein adsorption and initial attachment of osteoblasts. Biomed Mater. 2009;4:045002.

    Article  PubMed  Google Scholar 

  58. Secchi AG, Grigoriou V, Shapiro IM, Cavalcanti-Adam EA, Composto RJ, Ducheyne P, et al. RGDS peptides immobilized on titanium alloy stimulate bone cell attachment, differentiation and confer resistance to apoptosis. J Biomed Mater Res A. 2007;83:577–84.

    Article  CAS  PubMed  Google Scholar 

  59. Jemat A, Ghazali MJ, Razali M, Otsuka Y. Surface modifications and their effects on titanium dental implants. Biomed Res Int. 2015;2015:791725.

    Article  Google Scholar 

  60. Huang HH, Ho CT, Lee TH, Lee TL, Liao KK, Chen FL. Effect of surface roughness of ground titanium on initial cell adhesion. Biomol Eng. 2004;21:93–7.

    Article  CAS  PubMed  Google Scholar 

  61. Deligianni DD, Katsala N, Ladas S, Sotiropoulou D, Amedee J, Missirlis Y. Effect of surface roughness of the titanium alloy Ti–6Al–4V on human bone marrow cell response and on protein adsorption. Biomaterials. 2001;22:1241–51.

    Article  CAS  PubMed  Google Scholar 

  62. Khalili AA, Ahmad MR. A review of cell adhesion studies for biomedical and biological applications. Int J Mol Sci. 2015;16:18149–84.

    Article  CAS  PubMed  Google Scholar 

  63. Rosales-Leal J, Rodríguez-Valverde M, Mazzaglia G, Ramón-Torregrosa P, Díaz-Rodríguez L, García-Martínez O, et al. Effect of roughness, wettability and morphology of engineered titanium surfaces on osteoblast-like cell adhesion. Colloids Surf A Physicochem Eng Asp. 2010;365:222–9.

    Article  CAS  Google Scholar 

  64. Mustafa K, Wroblewski J, Lopez BS, Wennerberg A, Hultenby K, Arvidson K. Determining optimal surface roughness of TiO2 blasted titanium implant material for attachment, proliferation and differentiation of cells derived from human mandibular alveolar bone. Clin Oral Implants Res. 2001;12:515–25.

    Article  CAS  PubMed  Google Scholar 

  65. Ponsonnet L, Reybier K, Jaffrezic N, Comte V, Lagneau C, Lissac M, et al. Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour. Mater Sci Eng C Mater Biol Appl. 2003;23:551–60.

    Article  Google Scholar 

  66. Mante FK, Little K, Mante MO, Rawle C, Baran GR. Oxidation of titanium, RGD peptide attachment, and matrix mineralization of rat bone marrow stromal cells. J Oral Implantol. 2004;30:343–9.

    Article  PubMed  Google Scholar 

  67. Secchi AG, Grigoriou V, Shapiro IM, Cavalcanti-Adam EA, Composto RJ, Ducheyne P, et al. RGDS peptides immobilized on titanium alloy stimulate bone cell attachment, differentiation and confer resistance to apoptosis. J Biomed Mater Res A. 2007;83:577–84.

    Article  CAS  PubMed  Google Scholar 

  68. Puliyalil H, Cvelbar U. Selective plasma etching of polymeric substrates for advanced applications. Nanomaterials (Basel). 2016;6:E108.

    Article  Google Scholar 

  69. Naresh Kumar N, Yap SL, Khan MZ, Pattela Srinivasa RS. Effect of argon plasma treatment on tribological properties of UHMWPE/MWCNT nanocomposites. Polymers. 2016;8:295.

    Article  Google Scholar 

  70. Ito Y, Okawa T, Fujii T, Tanaka M. Influence of plasma treatment on surface properties of zirconia. J Osaka Dent Univ. 2016;50:79–84.

    Google Scholar 

  71. Vladescu A, Titorencu I, Dekhtyar Y, Jinga V, Pruna V, Balaceanu M, et al. In vitro biocompatibility of Si alloyed multi-principal element carbide coatings. PLoS one. 2016;11:e0161151.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Vidal G, Blanchi T, Mieszawska AJ, Calabrese R, Rossi C, Vigneron P, et al. Enhanced cellular adhesion on titanium by silk functionalized with titanium binding and RGD peptides. Acta Biomater. 2013;9:4935–43.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors acknowledge funding from TÜBİTAK (The Scientific and Technological Research Council of Turkey) through the Research Project 214M268 and BAP (Scientific Research Projects Fund of Izmir Katip Çelebi University) through the Research Projects 2015-TDR-SABE-0012 and 2016-ONP-MUMF-0022. Authors also acknowledge Dr. Mustafa Can, Eyup Yalçın and Dr. Nesrin Horzum Polat (Department of Engineering Sciences, Izmir Katip Çelebi University) for their assistance on AFM and contact angle measurements, respectively. Finally authors would like to acknowledge Titania Medical Devices (Izmir, Turkey) and Bonegraft Biological Materials A.Ş. (Izmir, Turkey) for providing the Ti discs and DNA quantification kit, respectively.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ozan Karaman or Utku Kürşat Ercan.

Ethics declarations

Conflict of interest

Authors have declared that there is no conflict of interest. The authors alone are responsible for the content and writing of this article.

Ethical approval

There are no animal experiments carried out for this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karaman, O., Kelebek, S., Demirci, E.A. et al. Synergistic Effect of Cold Plasma Treatment and RGD Peptide Coating on Cell Proliferation over Titanium Surfaces. Tissue Eng Regen Med 15, 13–24 (2018). https://doi.org/10.1007/s13770-017-0087-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-017-0087-5

Keywords

Navigation