Skip to main content
Log in

Mesenchymal Stem Cell-Based Therapies against Podocyte Damage in Diabetic Nephropathy

  • Review Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Injury to podocytes is an early event in diabetic nephropathy leading to proteinuria with possible progression to end-stage renal failure. The podocytes are unique and highly specialized cells that cover the outer layer of kidney ultra-filtration barrier and play an important role in glomerular function. In the past few decades, adult stem cells, such as mesenchymal stem cells (MSCs) with a regenerative and differentiative capacity have been extensively used in cell-based therapies. In addition to their capability for regeneration and differentiation, MSCs contributes to their milieu by paracrine action of a series of growth factors via antiapoptotic, mitogenic and other cytokine actions that actively participate in treatment of podocyte damage through prevention of podocyte effacement, detachment and apoptosis. It is hoped that novel stem cell-based therapies will be developed in the future to prevent podocyte injury, thereby reducing the burden of kidney disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AD-MSCs:

Adipose-derived mesenchymal stem cells

Ang II:

Angiotensin II

ASCs:

Adult stem cells

bFGF:

Basic fibroblast growth factor

BM-MSCs:

Bone marrow mesenchymal stem cells

BMP-7:

Bone morphogenetic protein-7

DN:

Diabetic nephropathy

EGF:

Epidermal growth factor

ERK:

Extracellular signal-regulated kinase

ESCs:

Embryonic stem cells

FGF2:

Fibroblast growth factor 2

FM-MSCs:

Fetal membranes mesenchymal stem cells

GBM:

Glomerular basement membrane

GDNF:

Glial cell-line derived neurotrophic factor

HGF:

Hepatocyte growth factor

IGF-I:

Insulin-like Growth Factor-I

IL-1β:

Interleukin-1 beta

IL-6:

Interleukin-6

iPSCs:

Induced pluripotent stem cells

JNK:c:

Jun amino-terminal kinase

MAPK:

Mitogen-activated protein kinase

MSCs:

Mesenchymal stem cells

PKC-α:

Protein kinase C-alpha

ROS:

Reactive oxygen species

SCs:

Stem cells

TGF-β R′:

Transforming growth factor beta receptor

TGF-β:

Transforming growth factor beta

TNFα:

Tumor necrosis factor alpha

UC-MSCs:

Umbilical cord mesenchymal stem cells

VEGF:

Vascular endothelial growth factor

References

  1. Sarje SK, Ghiware NB, Kawade RM, Gunjkar VN, Vadvalkar SM. Association of chronic complications of type 2 diabetes with the biochemical and physical estimations in subjects attending single visit screening for complications. Int J Res Pharm Chem. 2013;3:842–5.

    Google Scholar 

  2. Hajiaghaalipour F, Khalilpourfarshbafi M, Arya A. Modulation of glucose transporter protein by dietary flavonoids in type 2 diabetes mellitus. Int J Biol Sci. 2015;11:508–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ezquer FE, Ezquer ME, Parrau DB, Carpio D, Yanez AJ, Conget PA. Systemic administration of multipotent mesenchymal stromal cells reverts hyperglycemia and prevents nephropathy in type 1 diabetic mice. Biol Blood Marrow Transpl J Am Soc Blood Marrow Transpl. 2008;14:631–40.

    Article  CAS  Google Scholar 

  4. Bakris GL, Williams M, Dworkin L, Elliott WJ, Epstein M, Toto R, et al. Preserving renal function in adults with hypertension and diabetes: a consensus approach. National Kidney Foundation Hypertension and Diabetes Executive Committees Working Group. Am J kidney Dis Off J Natl Kidney Found. 2000;36:646–61.

    Article  CAS  Google Scholar 

  5. Wolf G, Chen S, Ziyadeh FN. From the periphery of the glomerular capillary wall toward the center of disease: podocyte injury comes of age in diabetic nephropathy. Diabetes. 2005;54:1626–34.

    Article  CAS  PubMed  Google Scholar 

  6. Fioretto P, Caramori ML, Mauer M. The kidney in diabetes: dynamic pathways of injury and repair. The Camillo Golgi Lecture 2007. Diabetologia. 2008;51:1347–55.

    Article  CAS  PubMed  Google Scholar 

  7. Somlo S, Mundel P. Getting a foothold in nephrotic syndrome. Nat Genet. 2000;24:333–5.

    Article  CAS  PubMed  Google Scholar 

  8. Tryggvason K, Patrakka J, Wartiovaara J. Hereditary proteinuria syndromes and mechanisms of proteinuria. N Engl J Med. 2006;354:1387–401.

    Article  CAS  PubMed  Google Scholar 

  9. Asanuma K, Mundel P. The role of podocytes in glomerular pathobiology. Clin Exp Nephrol. 2003;7:255–9.

    Article  CAS  PubMed  Google Scholar 

  10. Flyvbjerg A, Bennett WF, Rasch R, Kopchick JJ, Scarlett JA. Inhibitory effect of a growth hormone receptor antagonist (G120K-PEG) on renal enlargement, glomerular hypertrophy, and urinary albumin excretion in experimental diabetes in mice. Diabetes. 1999;48:377–82.

    Article  CAS  PubMed  Google Scholar 

  11. Thirone AC, Scarlett JA, Gasparetti AL, Araujo EP, Lima MH, Carvalho CR, et al. Modulation of growth hormone signal transduction in kidneys of streptozotocin-induced diabetic animals: effect of a growth hormone receptor antagonist. Diabetes. 2002;51:2270–81.

    Article  CAS  PubMed  Google Scholar 

  12. Catanuto P, Doublier S, Lupia E, Fornoni A, Berho M, Karl M, et al. 17 beta-estradiol and tamoxifen upregulate estrogen receptor beta expression and control podocyte signaling pathways in a model of type 2 diabetes. Kidney Int. 2009;75:1194–201.

    Article  CAS  PubMed  Google Scholar 

  13. Durvasula RV, Shankland SJ. Activation of a local renin angiotensin system in podocytes by glucose. Am J Physiol Renal Physiol. 2008;294:F830–9.

    Article  CAS  PubMed  Google Scholar 

  14. Hoffmann S, Podlich D, Hahnel B, Kriz W, Gretz N. Angiotensin II type 1 receptor overexpression in podocytes induces glomerulosclerosis in transgenic rats. J Am Soc Nephrol JASN. 2004;15:1475–87.

    Article  CAS  PubMed  Google Scholar 

  15. Reiser J, Mundel P. Dual effects of RAS blockade on blood pressure and podocyte function. Curr Hypertens Rep. 2007;9:403–8.

    Article  CAS  PubMed  Google Scholar 

  16. Shibata S, Nagase M, Yoshida S, Kawachi H, Fujita T. Podocyte as the target for aldosterone: roles of oxidative stress and Sgk1. Hypertension. 2007;49:355–64.

    Article  CAS  PubMed  Google Scholar 

  17. Wang Y, Zhou J, Minto AW, Hack BK, Alexander JJ, Haas M, et al. Altered vitamin D metabolism in type II diabetic mouse glomeruli may provide protection from diabetic nephropathy. Kidney Int. 2006;70:882–91.

    Article  PubMed  Google Scholar 

  18. Coward RJ, Welsh GI, Yang J, Tasman C, Lennon R, Koziell A, et al. The human glomerular podocyte is a novel target for insulin action. Diabetes. 2005;54:3095–102.

    Article  CAS  PubMed  Google Scholar 

  19. Sharma K, Ramachandrarao S, Qiu G, Usui HK, Zhu Y, Dunn SR, et al. Adiponectin regulates albuminuria and podocyte function in mice. J Clin Investig. 2008;118:1645–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Gross ML, Dikow R, Ritz E. Diabetic nephropathy: recent insights into the pathophysiology and the progression of diabetic nephropathy. Kidney Int Suppl. 2005;94:S50–3.

    Article  Google Scholar 

  21. Saleem MA. Biology of the human podocyte. Nephron Exp Nephrol. 2003;95:e87–92.

    Article  PubMed  Google Scholar 

  22. Yanagida-Asanuma E, Asanuma K, Kim K, Donnelly M, Choi HY, Chang JH, et al. Synaptopodin protects against proteinuria by disrupting Cdc42:IRSp53:Mena signaling complexes in kidney podocytes. Am J Pathol. 2007;171:415–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Barisoni L, Schnaper HW, Kopp JB. A proposed taxonomy for the podocytopathies: a reassessment of the primary nephrotic diseases. Clin J Am Soc Nephrol CJASN. 2007;2:529–42.

    Article  PubMed  Google Scholar 

  24. Chuang PY, He JC. Signaling in regulation of podocyte phenotypes. Nephron Physiol. 2009;111:9–15.

    Article  Google Scholar 

  25. Shankland SJ. The podocyte’s response to injury: role in proteinuria and glomerulosclerosis. Kidney Int. 2006;69:2131–47.

    Article  CAS  PubMed  Google Scholar 

  26. Wiggins RC. The spectrum of podocytopathies: a unifying view of glomerular diseases. Kidney Int. 2007;71:1205–14.

    Article  CAS  PubMed  Google Scholar 

  27. Anil Kumar P, Welsh GI, Saleem MA, Menon RK. Molecular and cellular events mediating glomerular podocyte dysfunction and depletion in diabetes mellitus. Front Endocrinol. 2014;5:151.

    Article  CAS  Google Scholar 

  28. Mundel P. Podocyte biology and response to injury. J Am Soc Nephrol JASN. 2002;13:3005–15.

    Article  PubMed  Google Scholar 

  29. Patrakka J, Tryggvason K. New insights into the role of podocytes in proteinuria. Nat Rev Nephrol. 2009;5:463–8.

    Article  CAS  PubMed  Google Scholar 

  30. Salmon AH, Neal CR, Harper SJ. New aspects of glomerular filtration barrier structure and function: five layers (at least) not three. Curr Opin Nephrol Hypertens. 2009;18:197–205.

    CAS  PubMed  Google Scholar 

  31. Coward RJ, Welsh GI, Koziell A, Hussain S, Lennon R, Ni L, et al. Nephrin is critical for the action of insulin on human glomerular podocytes. Diabetes. 2007;56:1127–35.

    Article  CAS  PubMed  Google Scholar 

  32. Tossidou I, Starker G, Kruger J, Meier M, Leitges M, Haller H, et al. PKC-alpha modulates TGF-beta signaling and impairs podocyte survival. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol. 2009;24:627–34.

    Article  CAS  Google Scholar 

  33. Herman-Edelstein M, Thomas MC, Thallas-Bonke V, Saleem M, Cooper ME, Kantharidis P. Dedifferentiation of immortalized human podocytes in response to transforming growth factor-beta: a model for diabetic podocytopathy. Diabetes. 2011;60:1779–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Drummond K, Mauer M. The early natural history of nephropathy in type 1 diabetes: II. Early renal structural changes in type 1 diabetes. Diabetes. 2002;51:1580–7.

    Article  CAS  PubMed  Google Scholar 

  35. Meyer TW, Bennett PH, Nelson RG. Podocyte number predicts long-term urinary albumin excretion in Pima Indians with Type II diabetes and microalbuminuria. Diabetologia. 1999;42:1341–4.

    Article  CAS  PubMed  Google Scholar 

  36. Pagtalunan ME, Miller PL, Jumping-Eagle S, Nelson RG, Myers BD, Rennke HG, et al. Podocyte loss and progressive glomerular injury in type II diabetes. J Clin Investig. 1997;99:342–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Toyoda M, Najafian B, Kim Y, Caramori ML, Mauer M. Podocyte detachment and reduced glomerular capillary endothelial fenestration in human type 1 diabetic nephropathy. Diabetes. 2007;56:2155–60.

    Article  CAS  PubMed  Google Scholar 

  38. Verzola D, Gandolfo MT, Ferrario F, Rastaldi MP, Villaggio B, Gianiorio F, et al. Apoptosis in the kidneys of patients with type II diabetic nephropathy. Kidney Int. 2007;72:1262–72.

    Article  CAS  PubMed  Google Scholar 

  39. White KE, Bilous RW, Marshall SM, El Nahas M, Remuzzi G, Piras G, et al. Podocyte number in normotensive type 1 diabetic patients with albuminuria. Diabetes. 2002;51:3083–9.

    Article  CAS  PubMed  Google Scholar 

  40. Lee HS. Pathogenic role of TGF-β in diabetic nephropathy. J Diabtes Metab. 2013;S9:1–7.

    Google Scholar 

  41. Dessapt C, Baradez MO, Hayward A, Dei Cas A, Thomas SM, Viberti G, et al. Mechanical forces and TGFbeta1 reduce podocyte adhesion through alpha3beta1 integrin downregulation. Nephrol Dial Transpl Off Publ Eur Dial Transpl Assoc Eur Renal Assoc. 2009;24:2645–55.

    CAS  Google Scholar 

  42. Susztak K, Raff AC, Schiffer M, Bottinger EP. Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes. 2006;55:225–33.

    Article  CAS  PubMed  Google Scholar 

  43. Yoo TH, Li JJ, Kim JJ, Jung DS, Kwak SJ, Ryu DR, et al. Activation of the renin-angiotensin system within podocytes in diabetes. Kidney Int. 2007;71:1019–27.

    Article  CAS  PubMed  Google Scholar 

  44. Stieger N, Worthmann K, Schiffer M. The role of metabolic and haemodynamic factors in podocyte injury in diabetes. Diabetes Metabol Res Rev. 2011;27:207–15.

    Article  CAS  Google Scholar 

  45. Terada Y, Inoshita S, Nakashima O, Tamamori M, Ito H, Kuwahara M, et al. Cell cycle inhibitors (p27Kip1 and p21CIP1) cause hypertrophy in LLC-PK1 cells. Kidney Int. 1999;56:494–501.

    Article  CAS  PubMed  Google Scholar 

  46. Flyvbjerg A, Dagnaes-Hansen F, De Vriese AS, Schrijvers BF, Tilton RG, Rasch R. Amelioration of long-term renal changes in obese type 2 diabetic mice by a neutralizing vascular endothelial growth factor antibody. Diabetes. 2002;51:3090–4.

    Article  CAS  PubMed  Google Scholar 

  47. Feng Z, Ting J, Alfonso Z, Strem BM, Fraser JK, Rutenberg J, et al. Fresh and cryopreserved, uncultured adipose tissue-derived stem and regenerative cells ameliorate ischemia-reperfusion-induced acute kidney injury. Nephrol Dial Transpl Off Publ Eur Dial Transpl Assoc Eur Renal Assoc. 2010;25:3874–84.

    CAS  Google Scholar 

  48. Ilic D, Polak JM. Stem cells in regenerative medicine: introduction. Br Med Bull. 2011;98:117–26.

    Article  PubMed  Google Scholar 

  49. Kolios G, Moodley Y. Introduction to stem cells and regenerative medicine. Respir Int Rev Thoracic Dis. 2013;85:3–10.

    Google Scholar 

  50. Das BC, Tyagi A. Chapter 23—Stem cells: a trek from laboratory to clinic to industry. In: Singh ASV, editor. Animal biotechnology. San Diego: Academic Press; 2014. p. 425–50.

    Chapter  Google Scholar 

  51. Whitworth DJ, Banks TA. Stem cell therapies for treating osteoarthritis: prescient or premature? Vet J. 2014;202:416–24.

    Article  PubMed  Google Scholar 

  52. Romano G. Stem cell transplantation therapy: controversy over ethical issues and clinical relevance. Drug News Perzspect. 2004;17:637–45.

    Article  Google Scholar 

  53. Obokata H, Vacanti CA. Chapter 31—Stem cells in tissue engineering. In: Vacanti RLL, editor. Principles of tissue engineering. 4th ed. Boston: Academic Press; 2014. p. 595–608.

    Chapter  Google Scholar 

  54. Alison MR, Poulsom R, Forbes SJ. Update on hepatic stem cells. Liver. 2001;21:367–73.

    Article  CAS  PubMed  Google Scholar 

  55. Bernard-Kargar C, Ktorza A. Endocrine pancreas plasticity under physiological and pathological conditions. Diabetes. 2001;50:S30–5.

    Article  CAS  PubMed  Google Scholar 

  56. Forbes S, Poulsom R, Wright N. Hepatic and renal differentiation from blood-borne stem cells. Gene Ther. 2002;9:625–30.

    Article  CAS  PubMed  Google Scholar 

  57. Morrison SJ, White PM, Zock C, Anderson DJ. Prospective identification, isolation by flow cytometry, and in vivo self-renewal of multipotent mammalian neural crest stem cells. Cell. 1999;96:737–49.

    Article  CAS  PubMed  Google Scholar 

  58. Gupta S, Verfaillie C, Chmielewski D, Kren S, Eidman K, Connaire J, et al. Isolation and characterization of kidney-derived stem cells. J Am Soc Nephrol JASN. 2006;17:3028–40.

    Article  CAS  PubMed  Google Scholar 

  59. Ito T. Stem cells of the adult kidney: where are you from? Nephrol Dial Transpl Off Publ Eur Dial Transpl Assoc Eur Renal Assoc. 2003;18:641–4.

    Google Scholar 

  60. Oliver JA, Maarouf O, Cheema FH, Martens TP, Al-Awqati Q. The renal papilla is a niche for adult kidney stem cells. J Clin Investig. 2004;114:795–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bussolati B, Bruno S, Grange C, Buttiglieri S, Deregibus MC, Cantino D, et al. Isolation of renal progenitor cells from adult human kidney. Am J Pathol. 2005;166:545–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kitamura S, Yamasaki Y, Kinomura M, Sugaya T, Sugiyama H, Maeshima Y, et al. Establishment and characterization of renal progenitor like cells from S3 segment of nephron in rat adult kidney. FASEB J. 2005;19:1789–97.

    Article  CAS  PubMed  Google Scholar 

  63. Chen J, Park H, Addabbo F, Ni J, Pelger E, Li H, et al. Kidney-derived mesenchymal stem cells contribute to vasculogenesis, angiogenesis and endothelial repair. Kidney Int. 2008;74:879–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Griffin MD, Ritter T, Mahon BP. Immunological aspects of allogeneic mesenchymal stem cell therapies. Hum Gene Ther. 2010;21:1641–55.

    Article  CAS  PubMed  Google Scholar 

  65. Dimarino AM, Caplan AI, Bonfield TL. Mesenchymal stem cells in tissue repair. Front Immunol. 2013;4:201.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Romanov YA, Svintsitskaya VA, Smirnov VN. Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells (Dayton, Ohio). 2003;21:105–10.

    Article  Google Scholar 

  67. Bruno S, Grange C, Deregibus MC, Calogero RA, Saviozzi S, Collino F, et al. Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J Am Soc Nephrol JASN. 2009;20:1053–67.

    Article  CAS  PubMed  Google Scholar 

  68. Burst V, Putsch F, Kubacki T, Volker LA, Bartram MP, Muller RU, et al. Survival and distribution of injected haematopoietic stem cells in acute kidney injury. Nephrol Dial Transpl Off Publ Eur Dial Transpl Assoc Eur Renal Assoc. 2013;28:1131–9.

    Google Scholar 

  69. Duffield JS, Park KM, Hsiao LL, Kelley VR, Scadden DT, Ichimura T, et al. Restoration of tubular epithelial cells during repair of the postischemic kidney occurs independently of bone marrow-derived stem cells. J Clin Investig. 2005;115:1743–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Togel F, Hu Z, Weiss K, Isaac J, Lange C, Westenfelder C. Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. Am J Physiol Renal Physiol. 2005;289:F31–42.

    Article  PubMed  Google Scholar 

  71. Gazit Z, Pelled G, Sheyn D, Kimelman N, Gazit D. Chapter 19—Mesenchymal stem cells. In: Lanza R, Atala A, editors. Essentials of stem cell biology. 3rd ed. Boston: Academic Press; 2014. p. 255–66.

    Chapter  Google Scholar 

  72. Prochazkova M, Chavez MG, Prochazka J, Felfy H, Mushegyan V, Klein OD. Chapter 18—Embryonic versus adult stem cells. In: Ramalingam AVSS, editor. Stem cell biology and tissue engineering in dental sciences. Boston: Academic Press; 2015. p. 249–62.

    Chapter  Google Scholar 

  73. Gimble JM, Katz AJ, Bunnell BA. Adipose-derived stem cells for regenerative medicine. Circ Res. 2007;100:1249–60.

    Article  CAS  PubMed  Google Scholar 

  74. Tobita M, Orbay H, Mizuno H. Adipose-derived stem cells: current findings and future perspectives. Discov Med. 2011;11:160–70.

    PubMed  Google Scholar 

  75. Fang Y, Tian X, Bai S, Fan J, Hou W, Tong H, et al. Autologous transplantation of adipose-derived mesenchymal stem cells ameliorates streptozotocin-induced diabetic nephropathy in rats by inhibiting oxidative stress, pro-inflammatory cytokines and the p38 MAPK signaling pathway. Int J Mol Med. 2012;30:85–92.

    CAS  PubMed  Google Scholar 

  76. Lee RH, Seo MJ, Reger RL, Spees JL, Pulin AA, Olson SD, et al. Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice. Proc Natl Acad Sci USA. 2006;103:17438–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lv S, Liu G, Wang J, Wang W, Cheng J, Sun A, et al. Mesenchymal stem cells transplantation ameliorates glomerular injury in streptozotocin-induced diabetic nephropathy in rats via inhibiting macrophage infiltration. Int Immunopharmacol. 2013;17:275–82.

    Article  CAS  PubMed  Google Scholar 

  78. Zhou H, Tian HM, Long Y, Zhang XX, Zhong L, Deng L, et al. Mesenchymal stem cells transplantation mildly ameliorates experimental diabetic nephropathy in rats. Chin Med J. 2009;122:2573–9.

    PubMed  Google Scholar 

  79. Ezquer F, Ezquer M, Simon V, Pardo F, Yanez A, Carpio D, et al. Endovenous administration of bone-marrow-derived multipotent mesenchymal stromal cells prevents renal failure in diabetic mice. Biol Blood Marrow Transpl J Am Soc Blood Marrow Transpl. 2009;15:1354–65.

    Article  CAS  Google Scholar 

  80. Lv S, Cheng J, Sun A, Li J, Wang W, Guan G, et al. Mesenchymal stem cells transplantation ameliorates glomerular injury in streptozotocin-induced diabetic nephropathy in rats via inhibiting oxidative stress. Diabetes Res Clin Pract. 2014;104:143–54.

    Article  CAS  PubMed  Google Scholar 

  81. Inoki K, Haneda M, Maeda S, Koya D, Kikkawa R. TGF-beta 1 stimulates glucose uptake by enhancing GLUT1 expression in mesangial cells. Kidney Int. 1999;55:1704–12.

    Article  CAS  PubMed  Google Scholar 

  82. Ali IHA, Brazil DP. Under the right conditions: protecting podocytes from diabetes-induced damage. Stem Cell Res Ther. 2013;4:119/111–2.

    Article  Google Scholar 

  83. Li D, Wang N, Zhang L, Hanyu Z, Xueyuan B, Fu B, et al. Mesenchymal stem cells protect podocytes from apoptosis induced by high glucose via secretion of epithelial growth factor. Stem Cell Res Ther. 2013;4:103.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Li L, Truong P, Igarashi P, Lin F. Renal and bone marrow cells fuse after renal ischemic injury. J Am Soc Nephrol. 2007;18:3067–77.

    Article  CAS  PubMed  Google Scholar 

  85. Ito T, Suzuki A, Okabe M, Imai E, Hori M. Application of bone marrow-derived stem cells in experimental nephrology. Exp Nephrol. 2001;9:444–50.

    Article  CAS  PubMed  Google Scholar 

  86. Poulsom R, Forbes SJ, Hodivala-Dilke K, Ryan E, Wyles S, Navaratnarasah S, et al. Bone marrow contributes to renal parenchymal turnover and regeneration. J Pathol. 2001;195:229–35.

    Article  CAS  PubMed  Google Scholar 

  87. Guo JK, Schedl A, Krause DS. Bone marrow transplantation can attenuate the progression of mesangial sclerosis. Stem Cells. 2006;24:406–15.

    Article  PubMed  Google Scholar 

  88. Prodromidi EI, Poulsom R, Jeffery R, Roufosse CA, Pollard PJ, Pusey CD, et al. Bone marrow-derived cells contribute to podocyte regeneration and amelioration of renal disease in a mouse model of Alport syndrome. Stem Cells. 2006;24:2448–55.

    Article  CAS  PubMed  Google Scholar 

  89. Meyer-Schwesinger C, Lange C, Brocker V, Agustian P, Lehmann U, Raabe A, et al. Bone marrow-derived progenitor cells do not contribute to podocyte turnover in the puromycin aminoglycoside and renal ablation models in rats. Am J Pathol. 2011;178:494–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Park JH, Hwang I, Hwang SH, Han H, Ha H. Human umbilical cord blood-derived mesenchymal stem cells prevent diabetic renal injury through paracrine action. Diabetes Res Clin Pract. 2012;98:465–73.

    Article  CAS  PubMed  Google Scholar 

  91. Qi W, Lu S, Liu G, Cheng J, Song Y, Ming T, et al. Human umbilical cord mesenchymal stem cells eo-culture ameliorates podocytic apoptosis: a possible role of HGF. Zhonghua Shenzangbing Zazhi. 2014;30:933–8.

    CAS  Google Scholar 

  92. Zhang L, Li K, Liu X, Li D, Luo C, Fu B, et al. Repeated systemic administration of human adipose-derived stem cells attenuates overt diabetic nephropathy in rats. Stem Cells Dev. 2013;22:3074–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Togel F, Weiss K, Yang Y, Hu Z, Zhang P, Westenfelder C. Vasculotropic, paracrine actions of infused mesenchymal stem cells are important to the recovery from acute kidney injury. Am J Physiol Renal Physiol. 2007;292:F1626–35.

    Article  CAS  PubMed  Google Scholar 

  94. Wang S, Li Y, Zhao J, Zhang J, Huang Y. Mesenchymal stem cells ameliorate podocyte injury and proteinuria in a type 1 diabetic nephropathy rat model. J Am Soc Blood Marrow Transpl. 2013;19:538–46.

    Article  Google Scholar 

  95. Abdel Aziz MT, Wassef MA, Ahmed HH, Rashed L, Mahfouz S, Aly MI, et al. The role of bone marrow derived-mesenchymal stem cells in attenuation of kidney function in rats with diabetic nephropathy. Diabetol Metabol Syndr. 2014;6:34.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kesavanarayanan Krishnan Selvarajan.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interest.

Ethical statement

There are no animal experiments carried out for this article.

Additional information

Manizheh Khalilpourfarshbafi and Fatemeh Hajiaghaalipour had equal contribution in this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalilpourfarshbafi, M., Hajiaghaalipour, F., Selvarajan, K.K. et al. Mesenchymal Stem Cell-Based Therapies against Podocyte Damage in Diabetic Nephropathy. Tissue Eng Regen Med 14, 201–210 (2017). https://doi.org/10.1007/s13770-017-0026-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-017-0026-5

Keywords

Navigation