Skip to main content
Log in

Chitosan/graphene and poly(D, L-lactic-co-glycolic acid)/graphene nano-composites for nerve tissue engineering

  • Original Article
  • Tissue Engineering
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

This study aimed at examining and comparing the fabrication process, electrical conductivity, and biological properties of Chitosan/Graphene membranes and poly(D, L-lactic-co-glycolic acid) (PLGA)/Graphene membranes. Nano-composite membranes were made using chitosan or PLGA matrix, and 0.5–1.5 wt.% graphene nano-sheets as the reinforcement material; all the membranes were fabricated through solution casting method. Fourier transform infrared spectroscopy and X-ray diffraction results indicated that the graphene had been uniformly dispersed in polymeric matrix. The membranes with 1.5 wt.% graphene appeared to have the highest value of electrical conductivity among all the examined the membranes and this growth was about 106 in comparison with neat polymers. Since the Chitosan 1.5% graphene membrane was found to have the highest proliferation after 72 hours by MTT [3-(4, 5-di-methylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide] assay of PC12 cell line (p<0.05), it is promising to consider nano-composite membrane for nerve tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ortigüela ME, Wood MB, Cahill DR. Anatomy of the sural nerve complex. J Hand Surg Am 1987;12:1119–1123.

    Article  PubMed  Google Scholar 

  2. Mackinnon SE, Hudson AR. Clinical application of peripheral nerve transplantation. Plast Reconstr Surg 1992;90:695–699.

    Article  CAS  PubMed  Google Scholar 

  3. Gu X, Ding F, Williams DF. Neural tissue engineering options for peripheral nerve regeneration. Biomaterials 2014;35:6143–6156.

    Article  CAS  PubMed  Google Scholar 

  4. Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH, Ramakrishna S. Electrical stimulation of nerve cells using conductive nanofibrous scaffolds for nerve tissue engineering. Tissue Eng Part A 2009;15:3605–3619.

    Article  CAS  PubMed  Google Scholar 

  5. Yang X, Tu Y, Li L, Shang S, Tao XM. Well-dispersed chitosan/graphene oxide nanocomposites. ACS Appl Mater Interfaces 2010;2:1707–1713.

    Article  CAS  PubMed  Google Scholar 

  6. Wang X, Bai H, Yao Z, Liua A, Shi G. Electrically conductive and mechanically strong biomimetic chitosan/reduced graphene oxide composite films. J Mater Chem 2010;20:9032–9036.

    Article  CAS  Google Scholar 

  7. Rana VK, Choi MC, Kong JY, Kim GY, Kim MJ, Kim SH, et al. Synthesis and drug-delivery behavior of chitosan-functionalized graphene oxide hybrid nanosheets. Macromol Mater Eng 2011;296:131–140.

    Article  CAS  Google Scholar 

  8. Yoon OJ, Jung CY, Sohn IY, Kim HJ, Hong B, Jhon MS, et al. Nanocomposite nanofibers of poly(d, l-lactic-co-glycolic acid) and graphene oxide nanosheets. Compos Part A 2011;42:1978–1984.

    Article  Google Scholar 

  9. Park JJ, Yu EJ, Lee WK, Ha CS. Mechanical properties and degradation studies of poly(D,L-lactide-co-glycolide) 50:50/graphene oxide nanocomposite films. Polym Adv Technol 2014;25:48–54.

    Article  CAS  Google Scholar 

  10. Houchin ML, Topp EM. Physical properties of PLGA films during polymer degradation. J Appl Polym Sci 2009;114:2848–2854.

    Article  CAS  Google Scholar 

  11. Zhang Y, Nayak TR, Hong H, Cai W. Graphene: a versatile nanoplatform for biomedical applications. Nanoscale 2012;4:3833–3842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ryu S, Kim BS. Culture of neural cells and stem cells on graphene. Tissue Eng Regen Med 2013;10:39–46.

    Article  CAS  Google Scholar 

  13. Fan H, Wang L, Zhao K, Li N, Shi Z, Ge Z, et al. Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites. Biomacromolecules 2010;11:2345–2351.

    Article  CAS  PubMed  Google Scholar 

  14. Sayyar S, Murray E, Thompson BC, Gambhir S, Officer DL, Wallace GG. Covalently linked biocompatible graphene/polycaprolactone composites for tissue engineering. Carbon 2013;52:296–304.

    Article  CAS  Google Scholar 

  15. Verdejo R, Bernal MM, Romasanta LJ, Lopez-Manchadoa MA. Graphene filled polymer nanocomposites. J Mater Chem 2011;21:3301–3310.

    Article  CAS  Google Scholar 

  16. Alekseev A, Chen D, Tkalya EE, Ghislandi MG, Syurik Y, Ageev O, et al. Local organization of graphene network inside graphene/polymer composites. Adv Funct Mater 2012;22:1311–1318.

    Article  CAS  Google Scholar 

  17. Bunch JS. Mechanical and electrical properties of graphene sheets [Dissertation]. Ithaca: Cornell University, 2008.

    Google Scholar 

  18. Tkalya E, Ghislandi M, Alekseev A, Koninga C, Loos J. Latex-based concept for the preparation of graphene-based polymer nanocomposites. J Mater Chem 2010;20:3035–3039.

    Article  CAS  Google Scholar 

  19. Liang J, Huang Y, Zhang L, Wang Y, Ma Y, Guo T, et al. Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv Funct Mater 2009;19:2297–2302.

    Article  CAS  Google Scholar 

  20. Chung DDL. Review electrical applications of carbon materials. J Mater Sci 2004;39:2645–2661.

    Article  CAS  Google Scholar 

  21. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, et al. Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 2010;22:3906–3924.

    Article  CAS  PubMed  Google Scholar 

  22. Pan Y, Wu T, Bao H, Li L. Green fabrication of chitosan films reinforced with parallel aligned graphene oxide. Carbohydr Polym 2011;83:1908–1915.

    Article  CAS  Google Scholar 

  23. Ahadian S, Estili M, Surya VJ, Ramón-Azcón J, Liang X, Shiku H, et al. Facile and green production of aqueous graphene dispersions for biomedical applications. Nanoscale 2015;7:6436–6443.

    Article  CAS  PubMed  Google Scholar 

  24. Akhavan O, Ghaderi E, Shirazian SA, Rahighi R. Rolled graphene oxide foams as three-dimensional scaffolds for growth of neural fibers using electrical stimulation of stem cells. Carbon 2016;97:71–77.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ebrahimian-Hosseinabadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soltani, S., Ebrahimian-Hosseinabadi, M. & Zargar Kharazi, A. Chitosan/graphene and poly(D, L-lactic-co-glycolic acid)/graphene nano-composites for nerve tissue engineering. Tissue Eng Regen Med 13, 684–690 (2016). https://doi.org/10.1007/s13770-016-9130-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-016-9130-1

Key Words

Navigation