Skip to main content
Log in

Crosstalk between mesenchymal stem cells and macrophages in tissue repair

  • Original Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Tissue repair post injury is a multi-step wound healing process and consists of inflammatory, proliferative, and remodeling phases, which are coordinated by interplays between many resident and infiltrating cells as well as growth factors and extracellular matrix proteins. Macrophages are major cell populations regulating inflammation by initiation, propagation, and resolution. Activated macrophages that are differentially polarized, either classically or alternatively, are also called pro-inflammatory M1 and anti-inflammatory M2, respectively. These macrophages participate in the whole process of tissue repair. The contribution of multi-potent mesenchymal stem cells (MSCs) in tissue repair, either endogenous or therapeutically injected, has been addressed in a variety of degenerative and inflammatory disease models. Initially, the role of MSCs in the tissue repair process was restricted to the replacement of dysfunctional cells by either mesenchymal differentiation or transdifferentiation into other lineages. However, growing evidence has clearly defined MSCs as beneficial cells in tissue repair via immunomodulatory functions. In this review, we intend to summarize recent important observations in two essential cell components, MSCs and macrophages, in the context of tissue repair. Individual roles of MSCs and macrophages as well as the crosstalk between these two types of cells are discussed. The roles of both MSC-educated macrophages and macrophage-associated MSCs during tissue repair are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. JA Ankrum, JF Ong, JM Karp, Mesenchymal stem cells: immune evasive, not immune privileged, Nat Biotechnol, 32, 252 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. M Dominici, K Le Blanc, I Mueller, et al., Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement, Cytotherapy, 8, 315 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. K English, Mechanisms of mesenchymal stromal cell immunomodulation, Immunol Cell Biol, 91, 19 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. S Ma, N Xie, W Li, et al., Immunobiology of mesenchymal stem cells, Cell Death Differ, 21, 216 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. ME Bernardo, WE Fibbe, Mesenchymal stromal cells: sensors and switchers of inflammation, Cell Stem Cell, 13, 392 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Y Shi, J Su, AI Roberts, et al., How mesenchymal stem cells interact with tissue immune responses, Trends Immunol, 33, 136 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. K Le Blanc, D Mougiakakos, Multipotent mesenchymal stromal cells and the innate immune system, Nat Rev Immunol, 12, 383 (2012).

    Article  PubMed  Google Scholar 

  8. S Maxson, EA Lopez, D Yoo, et al., Concise review: role of mesenchymal stem cells in wound repair, Stem Cells Transl Med, 1, 142 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. H Choi, RH Lee, N Bazhanov, et al., Anti-inflammatory protein TSG-6 secreted by activated MSCs attenuates zymosan-induced mouse peritonitis by decreasing TLR2/NFkappaB signaling in resident macrophages, Blood, 118, 330 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. AJ Cutler, V Limbani, J Girdlestone, et al., Umbilical cordderived mesenchymal stromal cells modulate monocyte function to suppress T cell proliferation, J Immunol, 185, 6617 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. K English, FP Barry, BP Mahon, Murine mesenchymal stem cells suppress dendritic cell migration, maturation and antigen presentation, Immunol Lett, 115, 50 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. K Nemeth, A Leelahavanichkul, PS Yuen, et al., Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production, Nat Med, 15, 42 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. J Kim, P Hematti, Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages, Exp Hematol, 37, 1445 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. J Maggini, G Mirkin, I Bognanni, et al., Mouse bone marrowderived mesenchymal stromal cells turn activated macrophages into a regulatory-like profile, PLoS One, 5, e9252 (2010).

    Article  Google Scholar 

  15. DJ Prockop, Concise review: two negative feedback loops place mesenchymal stem/stromal cells at the center of early regulators of inflammation, Stem Cells, 31, 2042 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. R Carrero, I Cerrada, E Lledo, et al., IL1beta induces mesenchymal stem cells migration and leucocyte chemotaxis through NF-kappaB, Stem Cell Rev, 8, 905 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. RS Waterman, SL Tomchuck, SL Henkle, et al., A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an Immunosuppressive MSC2 phenotype, PLoS One, 5, e10088 (2010).

    Article  Google Scholar 

  18. DI Cho, MR Kim, HY Jeong, et al., Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone marrow-derived macrophages, Exp Mol Med, 46, e70 (2014).

    Article  Google Scholar 

  19. SM Melief, E Schrama, MH Brugman, et al., Multipotent stromal cells induce human regulatory T cells through a novel pathway involving skewing of monocytes toward antiinflammatory macrophages, Stem Cells, 31, 1980 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. C Shi, T Jia, S Mendez-Ferrer, et al., Bone marrow mesenchymal stem and progenitor cells induce monocyte emigration in response to circulating toll-like receptor ligands, Immunity, 34, 590 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. SM Melief, SB Geutskens, WE Fibbe, et al., Multipotent stromal cells skew monocytes towards an anti-inflammatory interleukin-10-producing phenotype by production of interleukin-6, Haematologica, 98, 888 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. A Mantovani, SK Biswas, MR Galdiero, et al., Macrophage plasticity and polarization in tissue repair and remodelling, J Pathol, 229, 176 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. A Sica, A Mantovani, Macrophage plasticity and polarization: in vivo veritas, J Clin Invest, 122, 787 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. SD Ricardo, H van Goor, AA Eddy, Macrophage diversity in renal injury and repair, J Clin Invest, 118, 3522 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. A Mantovani, A Sica, S Sozzani, et al., The chemokine system in diverse forms of macrophage activation and polarization, Trends Immunol, 25, 677 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. L Arnold, A Henry, F Poron, et al., Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis, J Exp Med, 204, 1057 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. C Troidl, H Mollmann, H Nef, et al., Classically and alternatively activated macrophages contribute to tissue remodelling after myocardial infarction, J Cell Mol Med, 13, 3485 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. B Mahdavian Delavary, WM van der Veer, M van Egmond, et al., Macrophages in skin injury and repair, Immunobiology, 216, 753 (2011).

    Article  PubMed  Google Scholar 

  29. MH Jiang, E Chung, GF Chi, et al., Substance P induces M2- type macrophages after spinal cord injury, Neuroreport, 23, 786 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. T Lucas, A Waisman, R Ranjan, et al., Differential roles of macrophages in diverse phases of skin repair, J Immunol, 184, 3964 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. H Nakajima, K Uchida, AR Guerrero, et al., Transplantation of mesenchymal stem cells promotes an alternative pathway of macrophage activation and functional recovery after spinal cord injury, J Neurotrauma, 29, 1614 (2012).

    Article  PubMed Central  PubMed  Google Scholar 

  32. RH Lee, AA Pulin, MJ Seo, et al., Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6, Cell Stem Cell, 5, 54 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. M Sasaki, R Abe, Y Fujita, et al., Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type, J Immunol, 180, 2581 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Y Wu, L Chen, PG Scott, et al., Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis, Stem Cells, 25, 2648 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. QZ Zhang, WR Su, SH Shi, et al., Human gingiva-derived mesenchymal stem cells elicit polarization of m2 macrophages and enhance cutaneous wound healing, Stem Cells, 28, 1856 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. E Eggenhofer, MJ Hoogduijn, Mesenchymal stem cell-educated macrophages, Transplant Res, 1, 12 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. D Giunti, B Parodi, C Usai, et al., Mesenchymal stem cells shape microglia effector functions through the release of CX3CL1, Stem Cells, 30, 2044 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. H Ohtaki, JH Ylostalo, JE Foraker, et al., Stem/progenitor cells from bone marrow decrease neuronal death in global ischemia by modulation of inflammatory/immune responses, Proc Natl Acad Sci U S A, 105, 14638 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. DO Freytes, JW Kang, I Marcos-Campos, et al., Macrophages modulate the viability and growth of human mesenchymal stem cells, J Cell Biochem, 114, 220 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. K Anton, D Banerjee, J Glod, Macrophage-associated mesenchymal stem cells assume an activated, migratory, proinflammatory phenotype with increased IL-6 and CXCL10 secretion, PLoS One, 7, e35036 (2012).

    Article  Google Scholar 

  41. JJ Koning, G Kooij, HE de Vries, et al., Mesenchymal stem cells are mobilized from the bone marrow during inflammation, Front Immunol, 4, 49 (2013).

    Article  PubMed Central  PubMed  Google Scholar 

  42. SP Herbert, DY Stainier, Molecular control of endothelial cell behaviour during blood vessel morphogenesis, Nat Rev Mol Cell Biol, 12, 551 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. TS Stappenbeck, H Miyoshi, The role of stromal stem cells in tissue regeneration and wound repair, Science, 324, 1666 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Y Okuno, A Nakamura-Ishizu, K Kishi, et al., Bone marrowderived cells serve as proangiogenic macrophages but not endothelial cells in wound healing, Blood, 117, 5264 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. H He, J Xu, CM Warren, et al., Endothelial cells provide an instructive niche for the differentiation and functional polarization of M2-like macrophages, Blood, 120, 3152 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. RJ Medina, CL O’Neill, TM O’Doherty, et al., Myeloid angiogenic cells act as alternative M2 macrophages and modulate angiogenesis through interleukin-8, Mol Med, 17, 1045 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. MJ Lee, MY Kim, SC Heo, et al., Macrophages regulate smooth muscle differentiation of mesenchymal stem cells via a prostaglandin F(2)alpha-mediated paracrine mechanism, Arterioscler Thromb Vasc Biol, 32, 2733 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. KL Spiller, RR Anfang, KJ Spiller, et al., The role of macrophage phenotype in vascularization of tissue engineering scaffolds, Biomaterials, 35, 4477 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. HS Hong, J Lee, E Lee, et al., A new role of substance P as an injury-inducible messenger for mobilization of CD29(+) stromal-like cells, Nat Med, 15, 425 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. HS Hong, YD Kim, KJ Yoon, et al., A new paradigm for stem cell therapy: substance-P as a stem cell-stimulating agent, Arch Pharm Res, 34, 2003 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. MH Jiang, JE Lim, GF Chi, et al., Substance P reduces apoptotic cell death possibly by modulating the immune response at the early stage after spinal cord injury, Neuroreport, 24, 846 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. W Ahn, HS Hong, M Zhang, et al., Induction of mesenchymal to epithelial transition of circulating mesenchymal stem cells by conditioned medium of injured cornea, Tissue Eng Regen Med, 10, 86 (2013).

    Article  Google Scholar 

  53. E Chung, W Ahn, Y Son, CXCL5 is abundant in the wound fluid at the late phase of wound healing, possibly promoting migration of mesenchymal stem cells and vascular tube formation, Tissue Eng Regen Med, 11, 1 (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eunkyung Chung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, E., Son, Y. Crosstalk between mesenchymal stem cells and macrophages in tissue repair. Tissue Eng Regen Med 11, 431–438 (2014). https://doi.org/10.1007/s13770-014-0072-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-014-0072-1

Key words

Navigation