Skip to main content
Log in

Age-related macular degeneration (AMD): Current concepts in pathogenesis and prospects for treatment

  • Review Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Age-related macular degeneration (AMD) is a degenerative disease of the eye that has been a subject of numerous studies in pathogenesis as well as clinical research in treatment owing to its notoriety as the leading cause of irreversible blindness in the elderly. Genetic studies have elucidated various pathways related to inflammation that contribute to AMD development such as those of the complement system, coagulation system, and the immune system. The current standard of treatment in AMD is inhibition of neovascularization using anti-vascular endothelial growth factor antibodies, which is effective in wet AMD. Furthermore, the absence of screening methods or preventive measures for AMD poses yet another challenge. Stem cell therapy now holds great promise for various diseases, and AMD may well be one of the earliest diseases such treatment modality may be employed, considering the unique characteristics of the eye as a localized and immune-privileged organ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. GS Hageman, DH Anderson, LV Johnson, et al., A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration, Proc Natl Acad Sci U S A, 102, 7227, (2005).

    Article  PubMed  CAS  Google Scholar 

  2. SP Daiger, Genetics was the human genome project worth the effort?, Science, 308, 362, (2005).

    Article  PubMed  CAS  Google Scholar 

  3. JL Wiggs, Complement factor H and macular degeneration: the genome yields an important clue, Arch Ophthalmol, 124, 577, (2006).

    Article  PubMed  CAS  Google Scholar 

  4. DH Anderson, RF Mullins, GS Hageman, et al., A role for local inflammation in the formation of drusen in the aging eye, Am J Ophthalmol, 134, 411, (2002).

    Article  PubMed  CAS  Google Scholar 

  5. DH Anderson, KC Talaga, AJ Rivest, et al., Characterization of beta amyloid assemblies in drusen: the deposits associated with aging and age-related macular degeneration, Exp Eye Res, 78, 243, (2004).

    Article  PubMed  CAS  Google Scholar 

  6. LV Johnson, S Ozaki, MK Staples, et al., A potential role for immune complex pathogenesis in drusen formation, Exp Eye Res, 70, 441, (2000).

    Article  PubMed  CAS  Google Scholar 

  7. LV Johnson, WP Leitner, MK Staples, et al., Complement activation and inflammatory processes in drusen formation and age related macular degeneration, Exp Eye Res, 73, 887, (2001).

    Article  PubMed  CAS  Google Scholar 

  8. JW Crabb, M Miyagi, X Gu, et al., Drusen proteome analysis: an approach to the etiology of age-related macular degeneration, Proc Natl Acad Sci U S A, 99, 14682, (2002).

    Article  PubMed  CAS  Google Scholar 

  9. RF Mullins, SR Russell, DH Anderson, et al., Drusen associated with aging and age-related macular degeneration contain proteins common to extracellular deposits associated with atherosclerosis, elastosis, amyloidosis, and dense deposit disease, Faseb J, 14, 835, (2000).

    PubMed  CAS  Google Scholar 

  10. D Bok, Evidence for an inflammatory process in age-related macular degeneration gains new support, Proc Natl Acad Sci U S A, 102, 7053, (2005).

    Article  PubMed  CAS  Google Scholar 

  11. SR de Cordoba, JE Gordillo, EG de Jorge, et al., The human complement factor H: functional roles, genetic variations and disease associations, Mol Immunol, 41, 355, (2004).

    Article  CAS  Google Scholar 

  12. SV Goverdhan, S Hannan, RB Newsom, et al., An analysis of the CFH Y402H genotype in AMD patients and controls from the UK, and response to PDT treatment, Eye, 22, 849, (2008).

    Article  PubMed  CAS  Google Scholar 

  13. AO Edwards, R Ritter, 3rd, KJ Abel, et al., Complement factor H polymorphism and age-related macular degeneration, Science, 308, 421, (2005).

    Article  PubMed  CAS  Google Scholar 

  14. RJ Klein, C Zeiss, EY Chew, et al., Complement factor H polymorphism in age-related macular degeneration, Science, 308, 385, (2005).

    Article  PubMed  CAS  Google Scholar 

  15. KP Magnusson, S Duan, H Sigurdsson, et al., CFH Y402H confers similar risk of soft drusen and both forms of advanced AMD, PLoS Med, 3, e5, (2006).

    Article  PubMed  CAS  Google Scholar 

  16. MA Zarbin, Age-related macular degeneration: review of pathogenesis, Eur J Ophthalmol, 8, 199, (1998).

    PubMed  CAS  Google Scholar 

  17. WR Green, Histopathology of age-related macular degeneration, Mol Vis, 5, 27, (1999).

    PubMed  CAS  Google Scholar 

  18. A Abdelsalam, L Del Priore, MA Zarbin, Drusen in age-related macular degeneration: pathogenesis, natural course, and laser photocoagulation-induced regression, Surv Ophthalmol, 44, 1, (1999).

    Article  PubMed  CAS  Google Scholar 

  19. R Klein, T Peto, A Bird, et al., The epidemiology of age-related macular degeneration, Am J Ophthalmol, 137, 486, (2004).

    Article  PubMed  Google Scholar 

  20. LA Donoso, D Kim, A Frost, et al., The role of inflammation in the pathogenesis of age-related macular degeneration, Surv Ophthalmol, 51, 137, (2006).

    Article  PubMed  Google Scholar 

  21. M Hangai, S He, S Hoffmann, et al., Sequential induction of angiogenic growth factors by TNF-alpha in choroidal endothelial cells, J Neuroimmunol, 171, 45, (2006).

    Article  PubMed  CAS  Google Scholar 

  22. PL Penfold, L Wen, MC Madigan, et al., Modulation of permeability and adhesion molecule expression by human choroidal endothelial cells, Invest Ophthalmol Vis Sci, 43, 3125, (2002).

    PubMed  Google Scholar 

  23. K Gabrielian, R Osusky, BD Sippy, et al., Effect of TGF-beta on interferon-gamma-induced HLA-DR expression in human retinal pigment epithelial cells, Invest Ophthalmol Vis Sci, 35, 4253, (1994).

    PubMed  CAS  Google Scholar 

  24. YS Zhang, ZY Lu, Y Yu, et al., Derivation, culture and retinal pigment epithelial differentiation of human embryonic stem cells using human fibroblast feeder cells, J Assist Reprod Genet, (2012).

    Google Scholar 

  25. SD Schwartz, JP Hubschman, G Heilwell, et al., Embryonic stem cell trials for macular degeneration: a preliminary report, Lancet, 379, 713, (2012).

    Article  PubMed  CAS  Google Scholar 

  26. H Akiyama, S Barger, S Barnum, et al., Inflammation and Alzheimer’s disease, Neurobiol Aging, 21, 383, (2000).

    Article  PubMed  CAS  Google Scholar 

  27. J Torzewski, DE Bowyer, J Waltenberger, et al., Processes in atherogenesis: complement activation, Atherosclerosis, 132, 131, (1997).

    Article  PubMed  CAS  Google Scholar 

  28. R Schwertz, U Rother, D Anders, et al., Complement analysis in children with idiopathic membranoproliferative glomerulonephritis: a long-term follow-up, Pediatr Allergy Immunol, 12, 166, (2001).

    Article  PubMed  CAS  Google Scholar 

  29. RF Mullins, N Aptsiauri, GS Hageman, Structure and composition of drusen associated with glomerulonephritis: implications for the role of complement activation in drusen biogenesis, Eye, 15, 390, (2001).

    Article  PubMed  CAS  Google Scholar 

  30. C O’Brien, J Duvall-Young, M Brown, et al., Electrophysiology of type II mesangiocapillary glomerulonephritis with associated fundus abnormalities, Br J Ophthalmol, 77, 778, (1993).

    Article  PubMed  Google Scholar 

  31. D Colville, R Guymer, RA Sinclair, et al., Visual impairment caused by retinal abnormalities in mesangiocapillary (membranoproliferative) glomerulonephritis type II (“dense deposit disease”), Am J Kidney Dis, 42, E2, (2003).

    Article  PubMed  Google Scholar 

  32. GS Hageman, RF Mullins, SR Russell, et al., Vitronectin is a constituent of ocular drusen and the vitronectin gene is expressed in human retinal pigmented epithelial cells, Faseb J, 13, 477, (1999).

    PubMed  CAS  Google Scholar 

  33. GS Hageman, PJ Luthert, NH Victor Chong, et al., An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE-Bruch’s membrane interface in aging and age-related macular degeneration, Prog Retin Eye Res, 20, 705, (2001).

    Article  PubMed  CAS  Google Scholar 

  34. WE Smiddy, SL Fine, Prognosis of patients with bilateral macular drusen, Ophthalmology, 91, 271, (1984).

    PubMed  CAS  Google Scholar 

  35. NH Chong, J Keonin, PJ Luthert, et al., Decreased thickness and integrity of the macular elastic layer of bruch’s membrane correspond to the distribution of lesions associated with age-related macular degeneration, Am J Pathol, 166, 241, (2005).

    Article  PubMed  Google Scholar 

  36. LS Lim, P Mitchell, JM Seddon, et al., Age-related macular degeneration, Lancet, 379, 1728, (2012).

    Article  PubMed  Google Scholar 

  37. SB Bressler, JC Silva, NM Bressler, et al., Clinicopathologic correlation of occult choroidal neovascularization in age-related macular degeneration, Arch Ophthalmol, 110, 827, (1992).

    Article  PubMed  CAS  Google Scholar 

  38. J Ambati, BK Ambati, SH Yoo, et al., Age-related macular degeneration: etiology, pathogenesis, and therapeutic strategies, Surv Ophthalmol, 48, 257, (2003).

    Article  PubMed  Google Scholar 

  39. FL Ferris, 3rd SL Fine, L Hyman, Age-related macular degeneration and blindness due to neovascular maculopathy, Arch Ophthalmol, 102, 1640, (1984).

    Article  PubMed  Google Scholar 

  40. EW Ng, AP Adamis, Targeting angiogenesis, the underlying disorder in neovascular age-related macular degeneration, Can J Ophthalmol, 40, 352, (2005).

    PubMed  Google Scholar 

  41. JM Seddon, S George, B Rosner, Cigarette smoking, fish consumption, omega-3 fatty acid intake, and associations with age-related macular degeneration: the US twin study of age-related macular degeneration, Arch Ophthalmol, 124, 995, (2006).

    Article  PubMed  CAS  Google Scholar 

  42. W Smith, J Assink, R Klein, et al., Risk factors for age-related macular degeneration: pooled findings from three continents, Ophthalmology, 108, 697, (2001).

    Article  PubMed  CAS  Google Scholar 

  43. L Hyman, AP Schachat, Q He, et al., Hypertension, cardiovascular disease, and age-related macular degeneration. age-related macular degeneration risk factors study group, Arch Ophthalmol, 118, 351, (2000).

    Article  PubMed  CAS  Google Scholar 

  44. JC Khan, DA Thurlby, H Shahid, et al., Smoking and age related macular degeneration: the number of pack years of cigarette smoking is a major determinant of risk for both geographic atrophy and choroidal neovascularisation, British J ophth, 90, 75, (2006).

    Article  CAS  Google Scholar 

  45. S Zareparsi, KE Branham, M Li, et al., Strong association of the Y402H variant in complement factor H at 1q32 with susceptibility to age-related macular degeneration, Am J Hum Genet, 77, 149, (2005).

    Article  PubMed  CAS  Google Scholar 

  46. I Bentwich, A Avniel, Y Karov, et al., Identification of hundreds of conserved and nonconserved human microRNAs, Nat Genet, 37, 766, (2005).

    Article  PubMed  CAS  Google Scholar 

  47. Q Zhou, R Gallagher, R U Vincenty, et al., Regulation of angiogenesis and choroidal neovascularization by members of microRNA-23∼27∼24 clusters, Proc Natl Acad Sci U S A, 108, 8287, (2011).

    Article  PubMed  CAS  Google Scholar 

  48. LJ Coin, JE Asher, RG Walters, et al., cnvHap: an integrative population and haplotype-based multiplatform model of SNPs and CNVs, Nat Methods, 7, 541, (2010).

    Article  PubMed  CAS  Google Scholar 

  49. KJ Meyer, LK Davis, EI Schindler, et al., Genome-wide analysis of copy number variants in age-related macular degeneration, Hum Genet, 129, 91, (2011).

    Article  PubMed  Google Scholar 

  50. JL Haines, MA Hauser, S Schmidt, et al., Complement factor H variant increases the risk of age-related macular degeneration, Science, 308, 419, (2005).

    Article  PubMed  CAS  Google Scholar 

  51. MA Friese, J Hellwage, TS Jokiranta, et al., FHL-1/reconectin and factor H: two human complement regulators which are encoded by the same gene are differently expressed and regulated, Mol Immunol, 36, 809, (1999).

    Article  PubMed  CAS  Google Scholar 

  52. B Gold, JE Merriam, J Zernant, et al., Variation in factor B (BF) and complement component 2 (C2) genes is associated with age-related macular degeneration, Nat Genet, 38, 458, (2006).

    Article  PubMed  CAS  Google Scholar 

  53. KL Spencer, MA Hauser, LM Olson, et al., Protective effect of complement factor B and complement component 2 variants in age-related macular degeneration, Hum Mol Genet, 16, 1986, (2007).

    Article  PubMed  CAS  Google Scholar 

  54. J Jakobsdottir, YP Conley, DE Weeks, et al., Susceptibility genes for age-related maculopathy on chromosome 10q26, Am J Hum Genet, 77, 389, (2005).

    Article  PubMed  CAS  Google Scholar 

  55. J Tuo, S Grob, K Zhang, et al., Genetics of immunological and inflammatory components in age-related macular degeneration, Ocul Immunol Inflamm, 20, 27, (2012).

    Article  PubMed  CAS  Google Scholar 

  56. JB Maller, JA Fagerness, RC Reynolds, et al., Variation in complement factor 3 is associated with risk of age-related macular degeneration, Nat Genet, 39, 1200, (2007).

    Article  PubMed  CAS  Google Scholar 

  57. JA Fagerness, JB Maller, BM Neale, et al., Variation near complement factor I is associated with risk of advanced AMD, Eur J Hum Genet, 17, 100, (2009).

    Article  PubMed  CAS  Google Scholar 

  58. S Tanimoto, H Tamura, T Ue, et al., A polymorphism of LOC387715 gene is associated with age-related macular degeneration in the Japanese population, Neurosci Lett, 414, 71, (2007).

    Article  PubMed  CAS  Google Scholar 

  59. S Schmidt, MA Hauser, WK Scott, et al., Cigarette smoking strongly modifies the association of LOC387715 and age-related macular degeneration, Am J Hum Genet, 78, 852, (2006).

    Article  PubMed  CAS  Google Scholar 

  60. BS Shastry, Assessment of the contribution of the LOC387715 gene polymorphism in a family with exudative age-related macular degeneration and heterozygous CFH variant (Y402H), J Hum Genet, 52, 384, (2007).

    Article  PubMed  Google Scholar 

  61. DE Weeks, YP Conley, HJ Tsai, et al., Age-related maculopathy: a genomewide scan with continued evidence of susceptibility loci within the 1q31, 10q26, and 17q25 regions, Am J Hum Genet, 75, 174, (2004).

    Article  PubMed  CAS  Google Scholar 

  62. LG Fritsche, T Loenhardt, A Janssen, et al., Age-related macular degeneration is associated with an unstable ARMS2 (LOC387715) mRNA, Nat Genet, 40, 892, (2008).

    Article  PubMed  CAS  Google Scholar 

  63. JH Moore, SM Williams, New strategies for identifying genegene interactions in hypertension, Ann Med, 34, 88, (2002).

    Article  PubMed  CAS  Google Scholar 

  64. ME Armstrong, HD Alexander, JL Ritchie, et al., Age-related alterations in basal expression and in vitro, tumour necrosis factor alpha mediated, upregulation of CD11b, Gerontology, 47, 180, (2001).

    Article  PubMed  CAS  Google Scholar 

  65. J Esparza-Gordillo, JM Soria, A Buil, et al., Genetic and environmental factors influencing the human factor H plasma levels, Immunogenetics, 56, 77, (2004).

    Article  PubMed  CAS  Google Scholar 

  66. Y Cho, X Cao, D Shen, et al., Evidence for enhanced tissue factor expression in age-related macular degeneration, Lab Invest, 91, 519, (2011).

    Article  PubMed  CAS  Google Scholar 

  67. FR Rickles, Mechanisms of cancer-induced thrombosis in cancer, Pathophysiol Haemost Thromb, 35, 103, (2006).

    Article  PubMed  Google Scholar 

  68. Y Zhang, Y Deng, T Luther, et al., Tissue factor controls the balance of angiogenic and antiangiogenic properties of tumor cells in mice, J Clin Invest, 94, 1320, (1994).

    Article  PubMed  CAS  Google Scholar 

  69. RW Mahley, Apolipoprotein E: cholesterol transport protein with expanding role in cell biology, Science, 240, 622, (1988).

    Article  PubMed  CAS  Google Scholar 

  70. DH Anderson, S Ozaki, M Nealon, et al., Local cellular sources of apolipoprotein E in the human retina and retinal pigmented epithelium: implications for the process of drusen formation, Am J Ophthalmol, 131, 767, (2001).

    Article  PubMed  CAS  Google Scholar 

  71. RW Mahley, Y Huang, Apolipoprotein E: from atherosclerosis to alzheimer’s disease and beyond, Curr Opin Lipidol, 10, 207, (1999).

    Article  PubMed  CAS  Google Scholar 

  72. JD Smith, Apolipoprotein E4: an allele associated with many diseases, Ann Med, 32, 118, (2000).

    Article  PubMed  CAS  Google Scholar 

  73. CM Bojanowski, D Shen, EY Chew, et al., An apolipoprotein E variant may protect against age-related macular degeneration through cytokine regulation, Environ Mol Mutagen, 47, 594, (2006).

    Article  PubMed  CAS  Google Scholar 

  74. SS Wickremasinghe, J Xie, J Lim, et al., Variants in the APOE gene are associated with improved outcome after anti-VEGF treatment for neovascular AMD, Invest Ophthalmol Vis Sci, 52, 4072, (2011).

    Article  PubMed  CAS  Google Scholar 

  75. BM Neale, J Fagerness, R Reynolds, et al., Genome-wide association study of advanced age-related macular degeneration identifies a role of the hepatic lipase gene (LIPC), Proc Natl Acad Sci U S A, 107, 7395, (2010).

    Article  PubMed  CAS  Google Scholar 

  76. SN Hasham, S Pillarisetti, Vascular lipases, inflammation and atherosclerosis, Clin Chim Acta, 372, 179, (2006).

    Article  PubMed  CAS  Google Scholar 

  77. S Beatty, H Koh, M Phil, et al., The role of oxidative stress in the pathogenesis of age-related macular degeneration, Surv Ophthalmol, 45, 115, (2000).

    Article  PubMed  CAS  Google Scholar 

  78. MA Zarbin, Current concepts in the pathogenesis of age-related macular degeneration, Arch Ophthalmol, 122, 598, (2004).

    Article  PubMed  Google Scholar 

  79. D Harman, The aging process, Proc Natl Acad Sci U S A, 78, 7124, (1981).

    Article  PubMed  CAS  Google Scholar 

  80. W Sickel, Electrical and metabolic manifestations of receptor and higher-order neuron activity in vertebrate retina, Adv Exp Med Biol, 24, 101, (1972).

    Article  PubMed  CAS  Google Scholar 

  81. DJ Tate, Jr., MV Miceli, DA Newsome, Phagocytosis and H2O2 induce catalase and metallothionein gene expression in human retinal pigment epithelial cells, Invest Ophthalmol Vis Sci, 36, 1271, (1995).

    PubMed  Google Scholar 

  82. J Wassell, S Davies, W Bardsley, et al., The photoreactivity of the retinal age pigment lipofuscin, J Biol Chem, 274, 23828, (1999).

    Article  PubMed  CAS  Google Scholar 

  83. PS Bora, JH Sohn, JM Cruz, et al., Role of complement and complement membrane attack complex in laser-induced choroidal neovascularization, J Immunol, 174, 491, (2005).

    PubMed  CAS  Google Scholar 

  84. M Chen, JV Forrester, H Xu, Synthesis of complement factor H by retinal pigment epithelial cells is down-regulated by oxidized photoreceptor outer segments, Exp Eye Res, 84, 635, (2007).

    Article  PubMed  CAS  Google Scholar 

  85. MJ Walport, Complement second of two parts, N Engl J Med, 344, 1140, (2001).

    Article  PubMed  CAS  Google Scholar 

  86. MJ Walport, Complement first of two parts, N Engl J Med, 344, 1058, (2001).

    Article  PubMed  CAS  Google Scholar 

  87. PF Zipfel, S Heinen, M Jozsi, et al., Complement and diseases: defective alternative pathway control results in kidney and eye diseases, Mol Immunol, 43, 97, (2006).

    Article  PubMed  CAS  Google Scholar 

  88. Y Shen, S Meri, Yin and Yang, Complement activation and regulation in Alzheimer’s disease, Prog Neurobiol, 70, 463, (2003).

    Article  PubMed  CAS  Google Scholar 

  89. M Nozaki, BJ Raisler, E Sakurai, et al., Drusen complement components C3a and C5a promote choroidal neovascularization, Proc Natl Acad Sci U S A, 103, 2328, (2006).

    Article  PubMed  CAS  Google Scholar 

  90. HE Grossniklaus, JX Ling, TM Wallace, et al., Macrophage and retinal pigment epithelium expression of angiogenic cytokines in choroidal neovascularization, Mol Vis, 8, 119, (2002).

    PubMed  CAS  Google Scholar 

  91. WA Kuziel, SJ Morgan, TC Dawson, et al., Severe reduction in leukocyte adhesion and monocyte extravasation in mice deficient in CC chemokine receptor 2, Proc Natl Acad Sci U S A, 94, 12053, (1997).

    Article  PubMed  CAS  Google Scholar 

  92. M Kamei, K Yoneda, N Kume, et al., Scavenger receptors for oxidized lipoprotein in age-related macular degeneration, Invest Ophthalmol Vis Sci, 48, 1801, (2007).

    Article  PubMed  Google Scholar 

  93. A Mantovani, A Sica, S Sozzani, et al., The chemokine system in diverse forms of macrophage activation and polarization, Trends Immunol, 25, 677, (2004).

    Article  PubMed  CAS  Google Scholar 

  94. J Tuo, CM Bojanowski, M Zhou, et al., Murine ccl2/cx3cr1 deficiency results in retinal lesions mimicking human age-related macular degeneration, Invest Ophthalmol Vis Sci, 48, 3827, (2007).

    Article  PubMed  Google Scholar 

  95. N Gupta, KE Brown, AH Milam, Activated microglia in human retinitis pigmentosa, late-onset retinal degeneration, and age-related macular degeneration, Exp Eye Res, 76, 463, (2003).

    Article  PubMed  CAS  Google Scholar 

  96. AD Dick, JV Forrester, J Liversidge, et al., The role of tumour necrosis factor (TNF-alpha) in experimental autoimmune uveoretinitis (EAU), Prog Retin Eye Res, 23, 617, (2004).

    Article  PubMed  CAS  Google Scholar 

  97. T Langmann, Microglia activation in retinal degeneration, J Leukoc Biol, 81, 1345, (2007).

    Article  PubMed  CAS  Google Scholar 

  98. J Chen, KM Connor, LE Smith, Overstaying their welcome: defective CX3CR1 microglia eyed in macular degeneration, J Clin Invest, 117, 2758, (2007).

    Article  PubMed  CAS  Google Scholar 

  99. J Tuo, BC Smith, CM Bojanowski, et al., The involvement of sequence variation and expression of CX3CR1 in the pathogenesis of age-related macular degeneration, FASEB J, 18, 1297, (2004).

    PubMed  CAS  Google Scholar 

  100. M Patel, CC Chan, Immunopathological aspects of age-related macular degeneration, Semin Immunopathol, 30, 97, (2008).

    Article  PubMed  Google Scholar 

  101. DM Brown, PK Kaiser, M Michels, et al., Ranibizumab versus verteporfin for neovascular age-related macular degeneration, N Engl J Med, 355, 1432, (2006).

    Article  PubMed  CAS  Google Scholar 

  102. PJ Rosenfeld, DM Brown, JS Heier, et al., Ranibizumab for neovascular age-related macular degeneration, N Engl J Med, 355, 1419, (2006).

    Article  PubMed  CAS  Google Scholar 

  103. DF Martin, MG Maguire, GS Ying, et al., Ranibizumab and bevacizumab for neovascular age-related macular degeneration, N Engl J Med, 364, 1897, (2011).

    Article  PubMed  CAS  Google Scholar 

  104. JM Seddon, UA Ajani, RD Sperduto, et al., Dietary carotenoids, vitamins A, C, and E, and advanced age-related macular degeneration, eye disease case-control study group, JAMA, 272, 1413, (1994).

    Article  PubMed  CAS  Google Scholar 

  105. JP SanGiovanni, EY Chew, E Agron, et al., The relationship of dietary omega-3 long-chain polyunsaturated fatty acid intake with incident age-related macular degeneration: AREDS report no. 23, Arch Ophthalmol, 126, 1274, (2008).

    Article  PubMed  Google Scholar 

  106. EY Chew, T Clemons, Vitamin E and the age-related eye disease study supplementation for age-related macular degeneration, Arch Ophthalmol, 123, 395, (2005).

    Article  PubMed  Google Scholar 

  107. LP Aiello, RL Avery, PG Arrigg, et al., Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders, N Engl J Med, 331, 1480, (1994).

    Article  PubMed  CAS  Google Scholar 

  108. ES Gragoudas, AP Adamis, ET Cunningham, Jr., et al., Pegaptanib for neovascular age-related macular degeneration, N Engl J Med, 351, 2805, (2004).

    Article  PubMed  CAS  Google Scholar 

  109. EW Ng, AP Adamis, Anti-VEGF aptamer (pegaptanib) therapy for ocular vascular diseases, Ann N Y Acad Sci, 1082, 151, (2006).

    Article  PubMed  CAS  Google Scholar 

  110. RL Avery, DJ Pieramici, MD Rabena, et al., Intravitreal bevacizumab (Avastin) for neovascular age-related macular degeneration, Ophthalmology, 113, 363, (2006).

    Article  PubMed  Google Scholar 

  111. JA Dixon, SC Oliver, JL Olson, et al., VEGF Trap-Eye for the treatment of neovascular age-related macular degeneration, Expert Opin Investig Drugs, 18, 1573, (2009).

    Article  PubMed  CAS  Google Scholar 

  112. LH Curtis, BG Hammill, KA Schulman, et al., Risks of mortality, myocardial infarction, bleeding, and stroke associated with therapies for age-related macular degeneration, Arch Ophthalmol, 128, 1273, (2010).

    Article  PubMed  Google Scholar 

  113. A Truong, TY Wong, LM Khachigian, Emerging therapeutic approaches in the management of retinal angiogenesis and edema, J Mol Med (Berl), 89, 343, (2011).

    Article  CAS  Google Scholar 

  114. TA Ciulla, MH Criswell, RP Danis, et al., Intravitreal triamcinolone acetonide inhibits choroidal neovascularization in a laser-treated rat model, Arch Ophthalmol, 119, 399, (2001).

    Article  PubMed  CAS  Google Scholar 

  115. DA Lamba, J Gust, TA Reh, Transplantation of human embryonic stem cell-derived photoreceptors restores some visual function in Crx-deficient mice, Cell Stem Cell, 4, 73, (2009).

    Article  PubMed  CAS  Google Scholar 

  116. F Osakada, H Ikeda, Y Sasai, et al., Stepwise differentiation of pluripotent stem cells into retinal cells, Nat Protoc, 4, 811, (2009).

    Article  PubMed  CAS  Google Scholar 

  117. K Takahashi, S Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors, Cell, 126, 663, (2006).

    Article  PubMed  CAS  Google Scholar 

  118. JW Streilein, Immunologic privilege of the eye, Springer Semin Immunopathol, 21, 95, (1999).

    Article  PubMed  CAS  Google Scholar 

  119. P Castanheira, L Torquetti, MB Nehemy, et al., Retinal incorporation and differentiation of mesenchymal stem cells intravitreally injected in the injured retina of rats, Arq Bras Oftalmol, 71, 644, (2008).

    Article  PubMed  Google Scholar 

  120. B Lu, S Wang, S Girman, et al., Human adult bone marrow-derived somatic cells rescue vision in a rodent model of retinal degeneration, Exp Eye Res, 91, 449, (2010).

    Article  PubMed  CAS  Google Scholar 

  121. LB To, DN Haylock, PJ Simmons, et al., The biology and clinical uses of blood stem cells, Blood, 89, 2233, (1997).

    PubMed  CAS  Google Scholar 

  122. DC Link, Mechanisms of granulocyte colony-stimulating factor-induced hematopoietic progenitor-cell mobilization, Semin Hematol, 37, 25, (2000).

    Article  PubMed  CAS  Google Scholar 

  123. T Lapidot, I Petit, Current understanding of stem cell mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells, Exp Hematol, 30, 973, (2002).

    Article  PubMed  CAS  Google Scholar 

  124. HS Hong, J Lee, E Lee, et al., A new role of substance P as an injury-inducible messenger for mobilization of CD29(+) stromal-like cells, Nat Med, 15, 425, (2009).

    Article  PubMed  CAS  Google Scholar 

  125. P Datar, S Srivastava, E Coutinho, et al., Substance P: structure, function, and therapeutics, Curr Top Med Chem, 4, 75, (2004).

    Article  PubMed  CAS  Google Scholar 

  126. HS Hong, YH Kim, Y Son, Perspectives on mesenchymal stem cells: tissue repair, immune modulation, and tumor homing, Arch Pharm Res, 35, 201, (2012).

    Article  PubMed  CAS  Google Scholar 

  127. HS Hong, DY Kim, KJ Yoon, et al., A new paradigm for stem cell therapy: substance-P as a stem cell-stimulating agent, Arch Pharm Res, 34, 2003, (2011).

    Article  PubMed  CAS  Google Scholar 

  128. DE Wright, EP Bowman, AJ Wagers, et al., Hematopoietic stem cells are uniquely selective in their migratory response to chemokines, J Exp Med, 195, 1145, (2002).

    Article  PubMed  CAS  Google Scholar 

  129. L Laterveer, IJ Lindley, MS Hamilton, et al., Interleukin-8 induces rapid mobilization of hematopoietic stem cells with radioprotective capacity and long-term myelolymphoid repopulating ability, Blood, 85, 2269, (1995).

    PubMed  CAS  Google Scholar 

  130. K Hattori, S Dias, B Heissig, et al., Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells, J Exp Med, 193, 1005, (2001).

    Article  PubMed  CAS  Google Scholar 

  131. PA Campochiaro, QD Nguyen, SM Shah, et al., Adenoviral vector-delivered pigment epithelium-derived factor for neovascular age-related macular degeneration: results of a phase I clinical trial, Hum Gene Ther, 17, 167, (2006).

    Article  PubMed  CAS  Google Scholar 

  132. TK Maclachlan, M Lukason, M Collins, et al., Preclinical safety evaluation of AAV2-sFLT01-a gene therapy for age-related macular degeneration, Mol Ther, 19, 326, (2011).

    Article  PubMed  CAS  Google Scholar 

  133. K Kinnunen, S Yla-Herttuala, Gene therapy in age related macular degeneration and hereditary macular disorders, Front Biosci (Elite Ed), 4, 2546, (2012).

    Article  Google Scholar 

  134. MP Avila, ME Farah, A Santos, et al., Three-year safety and visual acuity results of epimacular 90 strontium/90 yttrium brachytherapy with bevacizumab for the treatment of subfoveal choroidal neovascularization secondary to age-related macular degeneration, Retina, 32, 10, (2012).

    Article  PubMed  CAS  Google Scholar 

  135. J Dowling, Current and future prospects for optoelectronic retinal prostheses, Eye (Lond), 23, 1999, (2009).

    Article  CAS  Google Scholar 

  136. WH Dobelle, Artificial vision for the blind by connecting a television camera to the visual cortex, ASAIO J, 46, 3, (2000).

    Article  PubMed  CAS  Google Scholar 

  137. X Zhang, D Bok, Transplantation of retinal pigment epithelial cells and immune response in the subretinal space, Invest Ophthalmol Vis Sci, 39, 1021, (1998).

    PubMed  CAS  Google Scholar 

  138. RE MacLaren, RA Pearson, A MacNeil, et al., Retinal repair by transplantation of photoreceptor precursors, Nature, 444, 203, (2006).

    Article  PubMed  CAS  Google Scholar 

  139. MD Tibbetts, MA Samuel, TS Chang, et al., Stem cell therapy for retinal disease, Curr Opin Ophthalmol, 23, 226, (2012).

    Article  PubMed  Google Scholar 

  140. H Du, SL Lim, S Grob, et al., Induced pluripotent stem cell therapies for geographic atrophy of age-related macular degeneration, Semin Ophthalmol, 26, 216, (2011).

    Article  PubMed  Google Scholar 

  141. Z Ma, L Han, C Wang, et al., Autologous transplantation of retinal pigment epithelium-bruch’s membrane complex for hemorrhagic age-related macular degeneration, Invest Ophthalmol Vis Sci, 50, 2975, (2009).

    Article  PubMed  Google Scholar 

  142. S Joeres, H Llacer, FM Heussen, et al., Optical coherence tomography on autologous translocation of choroid and retinal pigment epithelium in age-related macular degeneration, Eye (Lond), 22, 782, (2008).

    Article  CAS  Google Scholar 

  143. JI Morgan, A Dubra, R Wolfe, et al., In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic, Invest Ophthalmol Vis Sci, 50, 1350, (2009).

    Article  PubMed  Google Scholar 

  144. DA Lamba, A McUsic, RK Hirata, et al., Generation, purification and transplantation of photoreceptors derived from human induced pluripotent stem cells, PLoS One, 5, e8763, (2010).

    Article  PubMed  CAS  Google Scholar 

  145. M Eiraku, N Takata, H Ishibashi, et al., Self-organizing opticcup morphogenesis in three-dimensional culture, Nature, 472, 51, (2011).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeong Hoon Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, O.R., Kim, Y.H. Age-related macular degeneration (AMD): Current concepts in pathogenesis and prospects for treatment. Tissue Eng Regen Med 10, 164–175 (2013). https://doi.org/10.1007/s13770-012-0374-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-012-0374-0

Key words

Navigation