Skip to main content
Log in

Volatile compounds of ginseng (Panax sp.): a review

  • Review
  • Published:
Journal of the Korean Society for Applied Biological Chemistry Submit manuscript

Abstract

The compositions of ginseng volatiles and their differences therein based on the species, cultivation age, and cultivation method are reviewed in this paper. Some sesquiterpene hydrocarbons (e.g., β-panasinsene, α-panasinsene, α-neoclovene, β-neoclovene, bicyclogermacrene, β-farnesene, aromadendrene, and (E)-caryophyllene) and sesquiterpene alcohols (e.g., (+)-spathulenol, ginsenol, panasinsenol A, and panasinsenol B) were reportedly the main volatile compounds of ginseng. The differences between ginseng species were mainly associated with sesquiterpene hydrocarbons and monoterpenes, such as α-selinene, α-terpinolene, β-bisabolene, β-phellandrene, β-sesquiphellandrene, zingiberene, germacrene D, limonene, α-gurjunene, (E)-caryophyllene, δ-cadinene, (E)-β-farnesene, α-humulene, bicyclogermacrene, longiborn-8-ene, β-neoclovene, and (+)-spathulenol. Also, the amounts of α-cadinol, α-bisabolol, thujopsene, and n-hexadecanoic acid significantly increased with the cultivation ages. Moreover, aromadendrene, calarene, β-panasinsene, (E)-caryophyllene, α-neoclovene, and α-farnensene contributed to the discrimination among ginsengs cultivated using different methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abd El-Aty AM, Kim I-K, Kim M-R, Lee C, Shim J-H (2008) Determination of volatile organic compounds generated from fresh, white and red Panax ginseng (C.A. Meyer) using a direct sample injection technique. Biomed Chromatogr 22:556–562

    Article  CAS  Google Scholar 

  • Angelova N, Kong H-W, van der Heijden R, Yang S-Y, Choi YH, Kim H-K, Wang M, Hankemeier T, van der Greef J, Xu G, Verpoorte R (2008) Recent methodology in the phytochemical analysis of ginseng. Phytochem Anal 19:2–16

  • Baker JM, Hawkins ND, Ward JL, Lovegrove A, Napier JA, Shewry PR, Beale MH (2006) A metabolomic study of substantial equivalence of field-grown genetically modified wheat. Plant Biotechnol J 4:381–392

  • Baldwin EA, Scott JW, Shewmaket CK, Schuch (2000) Flavor trivia and tomato aroma: biochemistry and possible mechanisms for control of important aroma components. Hortic Sci 35:1013–1022

    CAS  Google Scholar 

  • Beckmann M, Enot DP, Overy DP, Draper J (2007) Representation, comparison, and interpretation of metabolome fingerprint data for total composition analysis and quality trait investigation in potato cultivars. J Agric Food Chem 55:3444–3451

    Article  CAS  Google Scholar 

  • Bhattacgarya SK, Mitra SM (1991) Anxiolytic activity of Panax ginseng root: an experimental study. J Ethnopharmacol 34:87–92

    Article  Google Scholar 

  • Cho YS (1995) In Understanding of Korean ginseng: Korean ginseng contains various effective components (in Korean). The Society for Korean ginseng, Seoul

    Google Scholar 

  • Cho IH, Lee HJ, Kim Y-S (2012) Differences in the volatile compositions of giseng (Panax sp.). J Agric Food Chem 60:7616–7622

    Article  CAS  Google Scholar 

  • Choi KT (2008) Botanical characteristics, Pharmacological effects and medicinal components of Korean Panax ginseng C.A. Meyer. Acta Pharmacol Sin 29:1109–1118

    Article  CAS  Google Scholar 

  • Court WE (2000) In ginseng: the genus Panax. Harwood Academic Publishers, Amsterdam

    Google Scholar 

  • Deborde C, Maucourt M, Baldet P, Bernillon S, Biais B, Talon G, Ferrand C, Jacob D, Ferry-Dumazet H, de Daruvar A, Rolin D, Moing A (2009) Proton NMR quantitative profiling for quality assessment of greenhouse-grown tomato fruit. Metabolomics 5:183–198

  • Fellman JK, Miller TE, Mattinson DS, Matheis JP (2000) Factors that influence biosynthesis of volatile compounds in apple fruits. Hortic Science 35:1026–1033

    CAS  Google Scholar 

  • Garratt LC, Linforth R, Taylor AJ, Lowe KC, Power JB, Davey MR (2005) Metabolite fingerprinting in transgenic lettuce. Plant Biotechnol J 3:165–174

    Article  CAS  Google Scholar 

  • Han BH, Park MH, Han YN, Shin SC (1984) Studies on the antioxidant activity components of Korean ginseng-(IV)-antifatigue activity components. Yakhak Hoeji 28:231–235

    Google Scholar 

  • Hu C, Kitts DD (2001) Free radical scavenging capacity as related to antioxidant activity and ginsenoside composition of Asian and North American ginseng extracts. J Am Oil Chem Soc 78:249–255

    Article  CAS  Google Scholar 

  • Iwabuchi H, Yoshikura M, Obata S, Kamisako W (1984) Studies on the aroma constituents of crude drugs.I. On the aroma constituents of ginseng radix. Yakugaku Zasshi 104:951–958

    CAS  Google Scholar 

  • Iwabuchi H, Yoshikura M, Ikawa T, Kamisako W (1987) Studies on the sesquiterpenoids of Panax ginseng C.A. Mayer. Isolation and structure determination of sesquiterpene alcohols, panasinsanols A and B. Chem Pharm Bull 37:509–513

    Article  Google Scholar 

  • Iwabuchi H, Yoshikura M, Kamisako W (1989) Studies on the sesquiterpenoids of Panax ginseng C.A. Meyer (III). Chem Pharm Bull 37:509–513

    Article  CAS  Google Scholar 

  • Iwabuchi H, Kato N, Yosikura M (1990) Studies on the sesquiterpenoids of Panax ginseng C.A. Meyer (IV). Chem Pharm Bull 38:1405–1407

    Article  CAS  Google Scholar 

  • Kim SW, Ban SH, Chung H, Cho SH, Chung HJ, Choi PS, Yoo OJ, Liu JR (2004) Taxonomic discrimination of higher plants by multivariate analysis of Fourier transform infrared spectroscopy data. Plant Cell Rep 23:246–250

  • Kim KT, Yoo KM, Lee JW, Eom SH, Hwang IK, Lee CY (2007) Protective effect of steamed American ginseng (Panax quiquefolius L.) on V79-4 cells induced by oxidative stress. J Ethnipharmacol 111:443–450

    Article  Google Scholar 

  • Kim SW, Min SR, Kim JH, Park SK, Kim TI, Liu JR (2009) Rapid discrimination of commercial strawberry cultivars using Fourier transform infrared spectroscopy data combined by multivariate analysis. Plant Biotechnol Rep 3:87–93

    Article  Google Scholar 

  • Kitts DD, Wijewickreme AN, Hu C (2000) Antioxidant properties of North American ginseng extracts. Mol Cell Biochem 203:1–10

    Article  CAS  Google Scholar 

  • Ko S-R, Choi K-J, Kim Y-H (1996) Comparative study on the essential oil components of Panax species. Korean J Ginseng Sci 20:42–48

    CAS  Google Scholar 

  • Kwon Y-K, Ahn M-S, Park JS, Liu JR, In DS, Min BW, Kim SW (2014) Discrimination of cultivation ages and cultivars of ginseng leaves using fourier transform infrared spectroscopy combined with multivariate analysis. J Ginseng Res 38:52–58

  • Lebot V, Ndiaye A, Malpa R (2011) Phenotypic characterization of sweet potato [Ipomoea batatas (L.) Lam.] genotypes in relation to prediction of chemical quality constituents by NIRS equations. Plant Breed 130:457–463

    Article  CAS  Google Scholar 

  • Lee EJ, Shaykhutdinov R, Weljie AM, Vogel HJ, Facchini PJ, Park SU, Kim YK, Yang TJ (2009) Quality assessment of ginseng by 1H NMR metabolite fingerprinting and profiling analysis. J Agric Food Chem 57:7513–7522

  • Lee K-S, Kim G-H, Kim H-H, Chang Y-I, Lee G-H (2012) Volatile compounds of Panax ginseng C.A. Meyer cultivated with different cultivation methods. J Food Sci 77:C805–C810

    Article  CAS  Google Scholar 

  • Lewington A (1993) In Medical plants and plant extracts: A review of their importation into Europe (spcecies in danger). TRAFFIC International, UK

  • Li S, Li X-R, Wang G-I, Nie L-X, Yang Y-J, Wu H-Z, Wei F, Zhang J, Tian J-G, Lin R-C (2012) Rapid discrimination of Chinese red ginseng and Korean ginseng using an electronic nose coupled with chemometrics. J Pharm Biomed Anal 70:605–608

  • Lu G-H, Zhou Q, Sun S-Q, Leung KS, Zhang H, Zhao Z-Z (2008) Differentiation of Asian ginseng, American ginseng and Notoginseng by fourier transform infrared spectroscopy combined with two-dimensional correlation infrared spectroscopy. J Mol Struct 883–884:91–98

    Article  Google Scholar 

  • Nguyen MD, Nguyen TN, Kasai R, Ito A, Yamasaki K, Tanaka O (1993) Saponins from Vietnamese ginseng, Panax Vietnamrnsis Ha et Grushv. collected in Central Vietnam. 1. Chem Pharm Bull 41:2010–2014

    Article  CAS  Google Scholar 

  • Okada T, Afendi FM, Altaf-Ul-Amin M, Takahashi H, Nakamura K, Kanaya S (2010) Metabolomics of medicinal plants: the importance of multivariate analysis of analytical chemistry data. Curr Comput Aided Drug Des 6:79–96

    Article  Google Scholar 

  • Park SY, Jung I, Jung TL, Park MK (2001) Difference between steaming and decocting ginseng. J Ginseng Res 25:37–40

    Google Scholar 

  • Park MJ, Kim MK, In J-G, Yang D-C (2006) Molecular identification of Korean ginseng by amplification refractory mutation system-PCR. Food Res Int 39:568–574

    Article  CAS  Google Scholar 

  • Qiu Y, Lu X, Pang T, Ma C, Li X, Xu G (2008) Determination of radix ginseng volatile oils at different ages by comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry. J Sep Sci 31:3451–3457

    Article  CAS  Google Scholar 

  • Reineccius G (2007) In Flavor chemistry and technology, 2nd edn. CRC Press, USA

    Google Scholar 

  • Ren Y, Wang T, Peng Y, Xia B, Qu LJ (2009) Distinguishing transgenic from nontransgenic Arabidopsis plants by 1H NMR-based metabolic fingerprinting. J Genet Genomics 36:621–628

    Article  CAS  Google Scholar 

  • Roessner U, Luedemann A, Brust D, Fiehn O, Linke T, Willmitzer L, Fernie AR (2001) Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13:11–29

  • Sohn H-J, Lee S-K, Wee J-J (1997) Flavor characteristics of Korean red ginseng. J Ginseng Res 24:148–152

    Google Scholar 

  • Takahashi M, Yoshikura M (1966) Studies on the compounds of Panax ginseng C.A. Meyer. V. On the structure of a new acetylene derivative “panaxynol”. Synthesis of 1,9-(cis)-heptadecadiene-4,6-diyn-3-ol. Yakugaku Zasshi 86:1051–1053

    CAS  Google Scholar 

  • Wang CZ, Aung HH, Ni M, Wu JA, Tong R, Wicks S, He TC, Yuan CS (2007) Red American ginseng: ginsenoside constituents and antiproliferative activities of heat-processed Panax quinquefolius roots. Planta Med 73:669–674

    Article  CAS  Google Scholar 

  • Ward JL, Harris C, Lewis J, Beale MH (2003) Assessment of 1H NMR spectroscopy and multivariate analysis as a technique for metabolite fingerprinting of Arabidopsis thaliana. Phytochem 62:949–957

    Article  CAS  Google Scholar 

  • Woo H-C, Shin B-K, Cho I, Koo H, Kim M, Han (2011) Anti-obesity effect of carbon dioxide supercritical fluid extracts of Panax ginseng C.A. Meyer. J Korean Soc Appl Biol Chem 54:738–743

    Article  CAS  Google Scholar 

  • Yoshihara K, Hirose Y (1975) The sesquiterpenes of ginseng. Bull Chem Soc Jpn 48:2078–2080

    Article  CAS  Google Scholar 

  • Yun TK (2001) Brief introduction of Panax ginseng C.A. Meyer. J Korean Med Sci 16:S3–S5

    Article  Google Scholar 

  • Zhang Y-L, Chen J-H, Lei J-B, Zhou Q, Sun S-Q, Noda I (2010) Evaluation of different grades of ginseng using fourier-transform infrared and two-dimensional infrared correlation spectroscopy. J Mol Struct 974:94–102

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This paper was supported by Wonkwang University in 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In Hee Cho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, I.H. Volatile compounds of ginseng (Panax sp.): a review. J Korean Soc Appl Biol Chem 58, 67–75 (2015). https://doi.org/10.1007/s13765-015-0007-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13765-015-0007-0

Keywords

Navigation