Skip to main content
Log in

Chemical Profiling of Volatile Bioactives in Luisia tenuifolia Blume Successive Extracts by GC–MS Analysis

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Luisia tenuifolia Blume is also known as “slender leaved Luisia” and has been traditionally used in various skin ailments. The study was conducted to investigate and further characterize the volatile bioactives of different extracts of L. tenuifolia. Whole plants of L. tenuifolia, after collection, were shade dried, pulverized, and extracted successively with n-hexane, chloroform, ethyl acetate, and ethanol by Soxhlet percolation. Each of the crude extracts was further subjected to gas chromatography–mass spectrometry (GC–MS) analysis. GC–MS profile of all the four extracts was established and a wide range of secondary metabolites were identified and characterized spectroscopically. A total of 25, 27, 14, and 15 components were identified in the n-hexane, chloroform, ethyl acetate, and ethanol extracts accounting for 79.31, 78.28, 97.08, and 83.83% of the total peak areas of volatile components, respectively. Several pharmacologically active components including natural antioxidants (β-tocopherol and δ-tocopherol), saturated and unsaturated fatty acids, eicosane, phytol, and spheroidenone were present. Thus, the current study reports the presence of promising, volatile yet thermostable bioactive components and in turn provides a promising note in the exploration of its biological activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analyzed during the current study are included in this published article.

References

  1. Reinikka, M. A. (1995). A history of the orchid (pp. 246–249). Timber Press.

    Google Scholar 

  2. Gutierrez, R. M. P. (2010). Orchids: A review of uses in traditional medicine, its phytochemistry and pharmacology. Journal of Medicinal Plant Research, 4(8), 592–638.

    CAS  Google Scholar 

  3. Szlachetko, D. (2001). Genera et species Orchidalium 1. Poland Botanical Journal, 46(1), 11–26.

    Google Scholar 

  4. Majumder, P., Laha, S., & Datta, N. (1982). Coelonin, A 9,10-dihydrophenanthrene from the orchids Coelogyne ochracea and Coelogyne elata. Phytochemistry, 21, 478–480.

    Article  CAS  Google Scholar 

  5. Majumder, P. L., Kar, A., & Shoolery, J. N. (1985). Bulbophyllanthrin, a phenanthrene of the orchid Bulbophyllum leopardium. Phytochemistry, 24, 2083–2087.

    Article  CAS  Google Scholar 

  6. Majumder, P. L., & Sabzabadi, E. (1988). Agrostophyllin, a naturally occurring phenanthropyran derivative from Agrostophyllum khasiyanum. Phytochemistry, 27, 1899–1901.

    Article  CAS  Google Scholar 

  7. Majumder, P. L., & Banerjee, S. (1990). Two stilbenoids from the orchid Eria flava. Phytochemistry, 29, 3052–3055.

    Article  CAS  Google Scholar 

  8. Yang, L., Wang, Z., & Xu, L. (2006). Phenols and a triterpene from Dendrobium aurantiacum var. denneanum (Orchidaceae). Biochemical Systematics and Ecology, 34, 658–660.

    Article  CAS  Google Scholar 

  9. Majumder, P. L., & Basak, M. (1991). Two stilbenoids from the orchid Cirrhopetalum andersonii. Phytochemistry, 30, 3429–3432.

    Article  CAS  Google Scholar 

  10. Majumder, P. L., & Sen, R. C. (1991). Pendulin, a polyoxygenated phenanthrene derivative from the orchid Cymbidium pendulum. Phytochemistry, 30, 2432–2434.

    Article  CAS  Google Scholar 

  11. Majumder, P. L., Banerjee, S., Lahiri, S., Mukhoti, N., & Sen, S. (1998). Dimeric phenanthrenes from two Agrostophyllum species. Phytochemistry, 47, 855–860.

    Article  CAS  Google Scholar 

  12. Majumder, P. L., Roychowdhury, M., & Chakraborty, S. (1998). Thunalbene, a stilbene derivative from the orchid Thunia alba. Phytochemistry, 49, 2375–2378.

    Article  CAS  Google Scholar 

  13. Sut, S., Maggi, F., & Dall’Acqua, S. (2017). Bioactive secondary metabolites from orchids (Orchidaceae). Chemistry and Diversity, 14(11), 28771984.

    Google Scholar 

  14. Zhang, H. J., Zhou, J. J., & Li, X. S. (2003). Study advance of Gastrodia elata b1. Amino Acids and Biotic Resources, 25, 17–20.

    CAS  Google Scholar 

  15. Matu, E. N., & Van Staden, J. (2003). Antibacterial and antiinflammatory activities of some plants used for medicinal purposes in Kenya. Journal of Ethnopharmacology, 87, 35–41.

    Article  PubMed  Google Scholar 

  16. Khan, M. R., & Omoloso, A. D. (2004). Antibacterial activity of Galeola foliata. Fitoterapia, 75, 494–486.

    Article  CAS  PubMed  Google Scholar 

  17. Gong, Y. Q., Fan, Y., Wu, D. Z., Yang, H., Hu, Z. B., & Wang, Z. T. (2004). In vivo and in vitro evaluation of erianin, a novel antiangiogenic agent. European Journal of Cancer, 40, 1554–1565.

    Article  CAS  PubMed  Google Scholar 

  18. Shyur, L. F., Chen, C. H., Lo, C. P., Wang, S. Y., Kang, P. L., Sun, S. J., Chang, C. A., Tzeng, C. M., & Yang, N. S. (2004). Induction of apoptosis in MCF-7 human breast cancer cells by phytochemicals from Anoectochilus formosanus. Journal of Biomedical Science, 11, 928–939.

    CAS  PubMed  Google Scholar 

  19. Wang, J., Matsuzaki, K., & Kitanaka, S. (2006). Stilbene derivatives from Pholidota chinensis and their antiinflammatory activity. Chemical and Pharmaceutical Bulletin, 54, 1216–1218.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, X., Xu, J. K., Wang, J., Wang, N. L., Kurihara, H., Kitanaka, S., & Yao, X. S. (2007). Bioactive bibenzyl derivatives and fluorenones from Dendrobium nobile. Journal of Natural Products, 70, 24–28.

    Article  CAS  PubMed  Google Scholar 

  21. Wang, S. Y., Kuo, Y. H., Chang, H. N., Kang, P. L., Tsay, H. S., Lin, K. F., Yang, N. S., & Shyur, L. F. (2002). Profiling and characterization antioxidant activities in Anoectochilus formosanus hayata. Journal of Agricultural and Food Chemistry, 50, 1859–1865.

    Article  CAS  PubMed  Google Scholar 

  22. Kim, H. J., Lee, S. R., & Moon, K. D. (2003). Ether fraction of methanol extracts of Gastrodia elata, medicinal herb protects against neuronal cell damage after transient global ischemia in gerbils. Phytotherapy Research, 17, 909–912.

    Article  PubMed  Google Scholar 

  23. Watanabe, K., Tanaka, R., Sakurai, H., Iguchi, K., Yamada, Y., Hsu, C. S., Sakuma, C., Kikuchi, H., Shibayama, H., & Kawai, T. (2007). Structure of cymbidine A, a monomeric peptidoglycan-related compound with hypotensive and diuretic activities, isolated from a higher plant, Cymbidium goeringii (Orchidaceae). Chemical Pharmaceutic Bulletin, 55, 780–783.

    Article  CAS  Google Scholar 

  24. Singh, S., Singh, A., Kumar, S., Kumar, M., Pandey, P., & Singh, M. (2012). Medicinal properties and uses of orchids: A concise review. Elixir Applied Botany, 52, 11627–11634.

    Google Scholar 

  25. Teoh, E. (2016). Medicinal orchids of Asia. <https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=1175044>.

  26. Majumder, P. L., & Lahiri, S. (1989). Chemical constituents of the orchid Luisia indivisa. Indian Journal of Chemistry, 28B, 771–774.

    CAS  Google Scholar 

  27. Majumder, P. L., & Lahiri, S. (1990). Lusianthrin and Lusianthridin, two stilbenoids from the orchid Luisia indivisa. Phytochemistry, 29(2), 621–624.

    Article  CAS  Google Scholar 

  28. Luning, B. (1967). Studies on Orchidaceae alkaloids IV Screening of species for alkaloids. . Phytochemistry, 6, 857–861.

    Article  CAS  Google Scholar 

  29. Lawler, L. J., & Slaytor, M. (1969). The distribution of alkaloids in New South Wales and Queensland Orchidaceae. Phytochemistry, 8, 1959–1962.

    Article  CAS  Google Scholar 

  30. Majumder, P. L., Lahiri, S., & Pal, S. (1994). Occurrence of lignans in the Orchidaceae plants Luisia volucris and Bulbophyllum triste. Journal of the Indian Chemical Society, 71, 645–647.

    CAS  Google Scholar 

  31. Joseph, J. (1987). Orchids of Nilgiris. Botanical Survey of India. Howrah.

  32. Sakthi, P. S., Vani, P. B., Abdhul, K. A., Janani, R., & Kumar, P. R. (2020). Antitumor effect of leaves of Ravenala madagascariensis Sonn., in PANC1 and SW1990 pancreatic cell lines. Indian Journal of Natural Products and Resources, 11, 89–95.

    Google Scholar 

  33. Casuga, F. P., Castillo, A. L., & Tolentino, C. M. J. (2016). GC-MS analyses of bioactive compounds present in different extracts of an endemic plant Broussonetia luzonica (Blanco) (Moraceae) leaves. Asian Pacific Journal of Tropical Biomedicine, 6(11), 957–961.

    Article  CAS  Google Scholar 

  34. Robertson, D. G. (2005). Metabonomics in toxicology: A review. Toxicological Sciences, 85, 809–822.

    Article  CAS  PubMed  Google Scholar 

  35. Fernie, A. R., Trethewey, R. N., Krotzky, A. J., & Willmitzer, L. (2004). Metabolite profiling: From diagnostics to systems biology. Natural Reviews Molecular Cell Biology, 5, 763–769.

    Article  CAS  Google Scholar 

  36. Kell, D. B., Brown, M., Davey, H. M., Dunn, W. B., Spasic, I., & Oliver, S. G. (2005). Metabolic footprinting and systems biology: The medium is the message. Natural Reviews Microbiology, 3, 557–565.

    Article  CAS  Google Scholar 

  37. Sharma, G. S. S., & Rajanna, L. (2021). GC-MS phytochemical profiling of leaf extracts of Aristolochia tagala Cham, a rare and important ethnomedicinal plant. Indian Journal of Natural Products and Resources, 12(1), 145–152.

    CAS  Google Scholar 

  38. Erdemoglu, N., Ozkan, S., Duran, A., & Tosun, F. (2009). GC-MS analysis and antimicrobial activity of alkaloid extract from Genista vuralii. Pharmaceutical Biology, 47(1), 81–85.

    Article  CAS  Google Scholar 

  39. Benkhaled, A., Boudjelal, A., Napoli, E., Baali, F., & Ruberto, G. (2020). Phytochemical profile, antioxidant activity and wound healing properties of Artemisia absinthium essential oil. Asian Pacific Journal of Tropical Biomedicine, 10(11), 496–504.

    Article  CAS  Google Scholar 

  40. Balachandar, M., Koshila Ravi, R., Ranjithamani, A., & Muthukumar, T. (2019). Comparative vegetative anatomy and mycorrhizal morphology of three South Indian Luisia species (Orchidaceae) with the note on their epiphytic adaptations. Flora, 251(4), 39–61.

    Article  Google Scholar 

  41. Sakthi, P. S., & Kumar, P. R. (2022). Pharmacognostical standardisation of an epiphytic orchid, Luisia tenuifolia Blume. Journal of Pharmacy & Pharmacognosy research, 10(1), 113–127.

    Article  Google Scholar 

  42. Aparna, V., Dileep, K. V., Mandal, P. K., Karthe, P., Sadasivan, C., & Haridas, M. (2012). Anti-inflammatory property of n-hexadecanoic acid: Structural evidence and kinetic assessment. Chemical Biology & Drug Design, 80(3), 434–439.

    Article  CAS  Google Scholar 

  43. Desbois, A. (2012). Potential applications of antimicrobial fatty acids in medicine, agriculture and other industries. Recent patents on anti-infective drug discovery, 7, 111–122.

    Article  CAS  PubMed  Google Scholar 

  44. Pinto, M. E. A., Araújo, S. G., Morais, M. I., Sá, N. P., Lima, C. M., Rosa, C. A., Siqueira, E. P., Johann, S., & Lima, L. A. R. S. (2017). Antifungal and antioxidant activity of fatty acid methyl esters from vegetable oils. Anais Da Academia Brasileira de Ciências, 89(3), 1671–1681.

    Article  CAS  PubMed  Google Scholar 

  45. Yoshida, Y., Niki, E., & Noguchi, N. (2003). Comparative study on the action of tocopherols and tocotrienols as antioxidant: Chemical and physical effects. Chemistry and Physics of Lipids, 123(1), 63–75.

    Article  CAS  PubMed  Google Scholar 

  46. Xie, C. Y., Zhu, H., Lin, L. P., Miao, Z. H., Geng, M. Y., Cai, Y. J., Chen, Y., Zhao, H. J., Luo, H. B., Zhang, X. W., Fan, L. M., Shen, Y. M., & Ding, J. (2007). MFTZ-1, an actinomycetes subspecies derived antitumor macrolide, functions as a novel topoisomerase II poison. Molecular Cancer Therapy, 6(11), 3059–3070.

    Article  CAS  Google Scholar 

  47. Pejin, B., Savic, A., Sokovic, M., Glamoclija, J., Ciric, A., Nikolic, M., Radotic, K., & Mojovic, M. (2014). Further in vitro evaluation of antiradical and antimicrobial activities of phytol. Natural Products Research, 28(6), 372–376.

    Article  CAS  Google Scholar 

  48. Song, Y., Son, M., Kang, H. R., Koh, S. Y., & Cho, S. (2015). Phytol induces apoptosis and ROS-mediated protective autophagy in human gastric adenocarcinoma AGS cells. Biochemistry and Analytical Biochemistry, 4, 211.

    Google Scholar 

  49. Wang, C. C., Ding, S., Chiu, K. H., Liu, W. S., Lin, T. J., & Wen, Z. H. (2016). Extract from a mutant Rhodobacter sphaeroides as an enriched carotenoid source. Food & Nutrition Research, 60, 29580.

    Article  Google Scholar 

Download references

Funding

There is no funding source for this article.

Author information

Authors and Affiliations

Authors

Contributions

S.P.S.: conceptualization, methodology, investigation, formal analysis, writing—original draft preparation. K.P.R.: methodology, investigation, formal analysis, writing—review and editing.

Corresponding author

Correspondence to Kumar Pathangi Ramachandran.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Conflict of Interest Statement

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sethuraman, S.P., Ramachandran, K.P. Chemical Profiling of Volatile Bioactives in Luisia tenuifolia Blume Successive Extracts by GC–MS Analysis. Appl Biochem Biotechnol 194, 84–98 (2022). https://doi.org/10.1007/s12010-021-03745-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03745-z

Keywords

Navigation