Skip to main content

Advertisement

Log in

A review on the use of cellulose nanomaterials for wastewater remediation of heavy metal ions

  • Review
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Cellulose nanomaterials successfully made a breakthrough in diverse application including wastewater treatment. Cellulose nanomaterials manifested as a promising green candidate due to availability in Earth’s crust, low carbon footprint, sustainable, biodegradable and renewable. Cellulose nanomaterials are often used as adsorbents and filler in membranes for wastewater remediation due to high surface area and capability to the capture heavy metal ions. However, the use of native cellulose nanomaterials is not effective enough and this paved the path towards introduction of additional functionalization to cellulose nanomaterials. The modifications of cellulose nanomaterials such as esterification, amination and (TEMPO)-mediated oxidation not only enhance the adsorption efficiency of heavy metal ions but also significantly improved the mechanical stability and reusability of adsorbents compared to unmodified cellulose nanomaterials. Moreover, nanocellulose based membranes possess desirable pore size, mechanical robustness, better selectivity and adsorption efficiency of heavy metal ions. This review paper describes a general overview of the different strategies to extract cellulose nanomaterials and its specific properties. This paper also discusses the various routes of surface modifications of cellulose nanomaterials and their contribution as adsorbents and nanocellulose-based membranes in removing heavy metal ions. Future research should focus on nanocellulose based nanohybrids with carboxyl, thiol and amino functionalization for wastewater remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

Not applicable.

Code availability

Not applicable.

References

  • Abdullah AR (1995) Environmental pollution in Malaysia: trends and prospects. TrAC Trends Anal Chem 14:191–198. https://doi.org/10.1016/0165-9936(95)91369-4

    Article  CAS  Google Scholar 

  • Abouzeid RE, Khiari R, El-Wakil N, Dufresne A (2018) Current state and new trends in the use of cellulose nanomaterials for wastewater treatment. Biomacromolecules 20:573–597

    Article  Google Scholar 

  • Amin M, Alazba A, Manzoor U (2014) A review of removal of pollutants from water/wastewater using different types of nanomaterials. Adv Mater Sci Eng. https://doi.org/10.1155/2014/825910

    Article  Google Scholar 

  • Anirudhan T, Shainy F (2015) Effective removal of mercury (II) ions from chlor-alkali industrial wastewater using 2-mercaptobenzamide modified itaconic acid-grafted-magnetite nanocellulose composite. J Colloid Interface Sci 456:22–31

    Article  CAS  Google Scholar 

  • Banerjee S, Gautam RK, Gautam PK, Jaiswal A, Chattopadhyaya MC (2016) Recent trends and advancement in nanotechnology for water and wastewater treatment: nanotechnological approach for water purification. In: Advanced research on nanotechnology for civil engineering applications. IGI Global, pp 208–252

  • Bansal M, Ram B, Chauhan GS, Kaushik A (2018) L-Cysteine functionalized bagasse cellulose nanofibers for mercury (II) ions adsorption. Int J Biol Macromol 112:728–736. https://doi.org/10.1016/j.ijbiomac.2018.01.206

    Article  CAS  Google Scholar 

  • Berglund LA, Peijs T (2010) Cellulose biocomposites—from bulk moldings to nanostructured systems. MRS Bull 35:201–207

    Article  CAS  Google Scholar 

  • Besbes I, Alila S, Boufi S (2011) Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content. Carbohydr Polym 84:975–983. https://doi.org/10.1016/j.carbpol.2010.12.052

    Article  CAS  Google Scholar 

  • Brandes R, Belosinschi D, Brouillette F, Chabot B (2019) A new electrospun chitosan/phosphorylated nanocellulose biosorbent for the removal of cadmium ions from aqueous solutions. J Environ Chem Eng 7:103477. https://doi.org/10.1016/j.jece.2019.103477

    Article  CAS  Google Scholar 

  • Brinchi L, Cotana F, Fortunati E, Kenny J (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94:154–169. https://doi.org/10.1016/j.carbpol.2013.01.033

    Article  CAS  Google Scholar 

  • Carpenter AW, de Lannoy C-F, Wiesner MR (2015) Cellulose nanomaterials in water treatment technologies. Environ Sci Technol 49:5277–5287

    Article  CAS  Google Scholar 

  • Chan HC, Chia CH, Zakaria S, Ahmad I, Dufresne A (2013) Production and characterisation of cellulose and nano-crystalline cellulose from kenaf core wood. BioResources 8:785–794

    Google Scholar 

  • Chieng BW, Lee SH, Ibrahim NA, Then YY, Loo YY (2017) Isolation and characterization of cellulose nanocrystals from oil palm mesocarp fiber. Polymers 9:355. https://doi.org/10.3390/polym9080355

    Article  CAS  Google Scholar 

  • Ching YC, Gunathilake TMS, Chuah CH, Yong CK, Ramesh S, Liou NS (2019) Curcumin/Tween 20-incorporated cellulose nanoparticles with enhanced curcumin solubility for nano-drug delivery: characterization and in vitro evaluation. Cellulose 26(9):5467–5481

    Article  CAS  Google Scholar 

  • Choo KW, Ching YC, Chuah CH, Sabariah J, Liou NS (2016) Preparation and characterization of polyvinyl alcohol-chitosan composite films reinforced with cellulose nanofiber. Materials 9:644

    Article  Google Scholar 

  • Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16:220–227. https://doi.org/10.1016/j.mattod.2013.06.004

    Article  CAS  Google Scholar 

  • Duruibe JO, Ogwuegbu M, Egwurugwu J (2007) Heavy metal pollution and human biotoxic effects. Int J Phys Sci 2:112–118

    Google Scholar 

  • Eyley S, Thielemans W (2014) Surface modification of cellulose nanocrystals. Nanoscale 6:7764–7779

    Article  CAS  Google Scholar 

  • Figueiredo J, Ismael M, Anjo C, Duarte A (2010) Cellulose and derivatives from wood and fibers as renewable sources of raw-materials. In: Carbohydrates in sustainable development I. Springer, pp 117–128. https://doi.org/10.1007/128_2010_88

  • Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92:407–418. https://doi.org/10.1016/j.jenvman.2010.11.011

    Article  CAS  Google Scholar 

  • George J, Sabapathi S (2015) Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol Sci Appl 8:45. https://doi.org/10.2147/NSA.S64386

    Article  CAS  Google Scholar 

  • George J, Ramana K, Bawa A (2011) Bacterial cellulose nanocrystals exhibiting high thermal stability and their polymer nanocomposites. Int J Biol Macromol 48:50–57. https://doi.org/10.1016/j.ijbiomac.2010.09.013

    Article  CAS  Google Scholar 

  • Goswami R, Mishra A, Bhatt N, Mishra A, Naithani P (2021) Potential of chitosan/nanocellulose based composite membrane for the removal of heavy metal (chromium ion). Mater Today Proc 46:10954–10959. https://doi.org/10.1016/j.matpr.2021.02.036

    Article  CAS  Google Scholar 

  • Grishkewich N, Mohammed N, Tang J, Tam KC (2017) Recent advances in the application of cellulose nanocrystals. Curr Opin Colloid Interface Sci 29:32–45. https://doi.org/10.1016/j.cocis.2017.01.005

    Article  CAS  Google Scholar 

  • Gunathilake TMSU, Ching YC, Yong CK, Chuah CH, Abdullah LC (2017) Biomedical andmicrobiological applications of bio-based porous materials: a review. Polymers 9(5):160

    Article  Google Scholar 

  • Gunathilake TMSU, Ching YC, Chuah CH, Illias HA, Ching K, Singh R, Nai-Shang L (2018) Influence of a nonionic surfactant on curcumin delivery of nanocellulose reinforced chitosan hydrogel. Int J Biol Macromol 118:1055–1064

    Article  Google Scholar 

  • Gunathilake TMSU, Ching YC, Chuah CH, Noorsaadah AR, Liou NS (2020) Recent advances in celluloses and their hybrids for stimuli-responsive drug delivery. Int J Biol Macromol 158:670–688

    Article  Google Scholar 

  • Gupta V, Carrott P, Singh R, Chaudhary M, Kushwaha S (2016) Cellulose: a review as natural, modified and activated carbon adsorbent. Bioresour Technol 216:1066–1076. https://doi.org/10.1016/j.biortech.2016.05.106

    Article  CAS  Google Scholar 

  • Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43:1519–1542

    Article  CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500. https://doi.org/10.1021/cr900339w

    Article  CAS  Google Scholar 

  • Hoang MT, Pham TD, Verheyen D, Nguyen MK, Pham TT, Zhu J, Van der Bruggen B (2020) Fabrication of thin film nanocomposite nanofiltration membrane incorporated with cellulose nanocrystals for removal of Cu (II) and Pb (II). Chem Eng Sci 228:115998. https://doi.org/10.1016/j.ces.2020.115998

    Article  CAS  Google Scholar 

  • Hokkanen S, Repo E, Sillanpää M (2013) Removal of heavy metals from aqueous solutions by succinic anhydride modified mercerized nanocellulose. Chem Eng J 223:40–47. https://doi.org/10.1016/j.cej.2013.02.054

    Article  CAS  Google Scholar 

  • Hokkanen S, Bhatnagar A, Sillanpää M (2016) A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Res 91:156–173. https://doi.org/10.1016/j.watres.2016.01.008

    Article  CAS  Google Scholar 

  • Huang Y, Yang P, Yang F, Chang C (2021) Self-supported nanoporous lysozyme/nanocellulose membranes for multifunctional wastewater purification. J Membr Sci 635:119537

    Article  CAS  Google Scholar 

  • Islam MM, Islam MS, Maniruzzaman M, Haque MM-U, Mohana AA (2021) Banana rachis CNC/Clay composite filter for dye and heavy metals adsorption from industrial wastewater. Eng Sci Technol. https://doi.org/10.37256/EST.222021817

    Article  Google Scholar 

  • Jumadi J, Kamari A, Hargreaves JS, Yusof N (2020) A review of nano-based materials used as flocculants for water treatment. Int J Environ Sci Technol 17:3571–3594. https://doi.org/10.1007/s13762-020-02723-y

    Article  Google Scholar 

  • Kanu I, Achi O (2011) Industrial effluents and their impact on water quality of receiving rivers in Nigeria. J Appl Technol Environ Sanit 1:75–86

    CAS  Google Scholar 

  • Kardam A, Raj KR, Srivastava S, Srivastava M (2014) Nanocellulose fibers for biosorption of cadmium, nickel, and lead ions from aqueous solution. Clean Technol Environ Policy 16:385–393. https://doi.org/10.1007/s10098-013-0634-2

    Article  CAS  Google Scholar 

  • Karim Z, Mathew AP, Kokol V, Wei J, Grahn M (2016) High-flux affinity membranes based on cellulose nanocomposites for removal of heavy metal ions from industrial effluents. RSC Adv 6:20644–20653. https://doi.org/10.1039/C5RA27059F

    Article  CAS  Google Scholar 

  • Karim Z, Hakalahti M, Tammelin T, Mathew AP (2017) In situ TEMPO surface functionalization of nanocellulose membranes for enhanced adsorption of metal ions from aqueous medium. RSC Adv 7:5232–5241. https://doi.org/10.1039/C6RA25707K

    Article  CAS  Google Scholar 

  • Karn B, Kuiken T, Otto M (2009) Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environ Health Perspect 117:1813–1831

    Article  Google Scholar 

  • Khan I, Saeed K, Khan I (2019) Nanoparticles: Properties, applications and toxicities. Arab J Chem 12:908–931. https://doi.org/10.1016/j.arabjc.2017.05.011

    Article  CAS  Google Scholar 

  • Khaw YY, Ching YC, Gan SN, Ramesh S, Ghazali NNN, Liu NS (2019) Poly(lactic acid) composite films reinforced with microcrystalline cellulose and keratin from chicken feather fiber in 1-butyl-3-methylimidazolium chloride. J Appl Polym Sci 136:47642

    Article  Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393. https://doi.org/10.1002/anie.200460587

    Article  CAS  Google Scholar 

  • Kontturi E et al (2016) Degradation and crystallization of cellulose in hydrogen chloride vapor for high-yield isolation of cellulose nanocrystals. Angew Chem Int Ed 55:14455–14458. https://doi.org/10.1002/anie.201606626

    Article  CAS  Google Scholar 

  • Lakherwal D (2014) Adsorption of heavy metals: a review. Int J Environ Res Dev 4:41–48

    Google Scholar 

  • Liu P, Sehaqui H, Tingaut P, Wichser A, Oksman K, Mathew AP (2014) Cellulose and chitin nanomaterials for capturing silver ions (Ag+) from water via surface adsorption. Cellulose 21:449–461. https://doi.org/10.1007/s10570-013-0139-5

    Article  CAS  Google Scholar 

  • Liu P, Borrell PF, Božič M, Kokol V, Oksman K, Mathew AP (2015) Nanocelluloses and their phosphorylated derivatives for selective adsorption of Ag+, Cu2+ and Fe3+ from industrial effluents. J Hazard Mater 294:177–185. https://doi.org/10.1016/j.jhazmat.2015.04.001

    Article  CAS  Google Scholar 

  • Mahfoudhi N, Boufi S (2017) Nanocellulose as a novel nanostructured adsorbent for environmental remediation: a review. Cellulose 24:1171–1197

    Article  CAS  Google Scholar 

  • Mariano M, El Kissi N, Dufresne A (2014) Cellulose nanocrystals and related nanocomposites: review of some properties and challenges. J Polym Sci Part B: Polym Phys 52:791–806

    Article  CAS  Google Scholar 

  • Mautner A, Kobkeatthawin T, Mayer F, Plessl C, Gorgieva S, Kokol V, Bismarck A (2019a) Rapid water softening with TEMPO-oxidized/phosphorylated nanopapers. Nanomaterials 9:136

    Article  CAS  Google Scholar 

  • Mautner A et al (2019b) Natural fibre-nanocellulose composite filters for the removal of heavy metal ions from water. Ind Crops Prod 133:325–332

    Article  CAS  Google Scholar 

  • Mishra S, Dwivedi SP, Singh R (2010) A review on epigenetic effect of heavy metal carcinogens on human health. Open Nutraceut J 3:188–193

    CAS  Google Scholar 

  • Mishra RK, Sabu A, Tiwari SK (2018) Materials chemistry and the futurist eco-friendly applications of nanocellulose: status and prospect. J Saudi Chem Soc 22:949–978. https://doi.org/10.1016/j.jscs.2018.02.005

    Article  CAS  Google Scholar 

  • Mohammed N, Grishkewich N, Tam KC (2018) Cellulose nanomaterials: promising sustainable nanomaterials for application in water/wastewater treatment processes. Environ Sci: Nano 5:623–658. https://doi.org/10.1039/C7EN01029J

    Article  CAS  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994. https://doi.org/10.1039/C0CS00108B

    Article  CAS  Google Scholar 

  • Moon RJ, Schueneman GT, Simonsen J (2016) Overview of cellulose nanomaterials, their capabilities and applications. JOM 68:2383–2394

    Article  CAS  Google Scholar 

  • Nechyporchuk O, Belgacem MN, Bras J (2016) Production of cellulose nanofibrils: a review of recent advances. Ind Crops Prod 93:2–25. https://doi.org/10.1016/j.indcrop.2016.02.016

    Article  CAS  Google Scholar 

  • Neto WPF et al (2016) Mechanical properties of natural rubber nanocomposites reinforced with high aspect ratio cellulose nanocrystals isolated from soy hulls. Carbohydr Polym 153:143–152. https://doi.org/10.1016/j.carbpol.2016.07.073

    Article  CAS  Google Scholar 

  • O’Connell DW, Birkinshaw C, O’Dwyer TF (2008) Heavy metal adsorbents prepared from the modification of cellulose: a review. Bioresour Technol 99:6709–6724. https://doi.org/10.1016/j.biortech.2008.01.036

    Article  CAS  Google Scholar 

  • Oksman K et al (2016) Review of the recent developments in cellulose nanocomposite processing. Compos A: Appl Sci Manuf 83:2–18

    Article  CAS  Google Scholar 

  • Oun AA, Rhim J-W (2016) Characterization of nanocelluloses isolated from Ushar (Calotropis procera) seed fiber: effect of isolation method. Mater Lett 168:146–150

    Article  CAS  Google Scholar 

  • Phanthong P, Reubroycharoen P, Hao X, Xu G, Abudula A, Guan G (2018) Nanocellulose: extraction and application. Carbon Resour Convers 1:32–43. https://doi.org/10.1016/j.crcon.2018.05.004

    Article  Google Scholar 

  • Putro JN, Kurniawan A, Ismadji S, Ju Y-H (2017) Nanocellulose based biosorbents for wastewater treatment: study of isotherm, kinetic, thermodynamic and reusability. Environ Nanotechnol Monit Manage 8:134–149. https://doi.org/10.1016/j.enmm.2017.07.002

    Article  Google Scholar 

  • Qu X, Alvarez PJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47:3931–3946

    Article  CAS  Google Scholar 

  • Rafieian F, Jonoobi M, Yu Q (2019) A novel nanocomposite membrane containing modified cellulose nanocrystals for copper ion removal and dye adsorption from water. Cellulose 26:3359–3373. https://doi.org/10.1007/s10570-019-02320-4

    Article  CAS  Google Scholar 

  • Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491

    Article  CAS  Google Scholar 

  • Saleh TA (2020) Nanomaterials: Classification, properties, and environmental toxicities. Environ Technol Innov 20:101067

    Article  CAS  Google Scholar 

  • Saleh TA (2021) Protocols for synthesis of nanomaterials, polymers, and green materials as adsorbents for water treatment technologies. Environ Technol Innov 24:101821

    Article  CAS  Google Scholar 

  • Sampath UTM, Ching YC, Chuah CH, Singh R, Lin P-C (2017) Preparation and characterization of nanocellulose reinforced semi-interpenetrating polymer network of chitosan hydrogel. Cellulose 24:2215–2228. https://doi.org/10.1007/s10570-017-1251-8

    Article  CAS  Google Scholar 

  • Sehaqui H, de Larraya UP, Liu P, Pfenninger N, Mathew AP, Zimmermann T, Tingaut P (2014) Enhancing adsorption of heavy metal ions onto biobased nanofibers from waste pulp residues for application in wastewater treatment. Cellulose 21:2831–2844

    Article  CAS  Google Scholar 

  • Septevani AA, Rifathin A, Sari AA, Sampora Y, Ariani GN, Sondari D (2020) Oil palm empty fruit bunch-based nanocellulose as a super-adsorbent for water remediation. Carbohydr Polym 229:115433

    Article  CAS  Google Scholar 

  • Shahnaz T, Padmanaban V, Narayanasamy S (2020) Surface modification of nanocellulose using polypyrrole for the adsorptive removal of Congo red dye and chromium in binary mixture. Int J Biol Macromol 151:322–332. https://doi.org/10.1016/j.ijbiomac.2020.02.181

    Article  CAS  Google Scholar 

  • Sharma PR, Chattopadhyay A, Sharma SK, Geng L, Amiralian N, Martin D, Hsiao BS (2018) Nanocellulose from spinifex as an effective adsorbent to remove cadmium (II) from water. ACS Sustain Chem Eng 6:3279–3290. https://doi.org/10.1021/acssuschemeng.7b03473

    Article  CAS  Google Scholar 

  • Sheikhi A, Safari S, Yang H, Van De Ven TG (2015) Copper removal using electrosterically stabilized nanocrystalline cellulose. ACS Appl Mater Interfaces 7:11301–11308. https://doi.org/10.1021/acsami.5b01619

    Article  CAS  Google Scholar 

  • Singh K, Arora JK, Sinha TJM, Srivastava S (2014) Functionalization of nanocrystalline cellulose for decontamination of Cr (III) and Cr (VI) from aqueous system: computational modeling approach. Clean Technol Environ Policy 16:1179–1191. https://doi.org/10.1007/s10098-014-0717-8

    Article  CAS  Google Scholar 

  • Sofla MRK, Brown RJ, Tsuzuki T, Rainey TJ (2016) A comparison of cellulose nanocrystals and cellulose nanofibres extracted from bagasse using acid and ball milling methods. Adv Nat Sci: Nanosci Nanotechnol 7:035004

    Google Scholar 

  • Suopajärvi T, Liimatainen H, Karjalainen M, Upola H, Niinimäki J (2015) Lead adsorption with sulfonated wheat pulp nanocelluloses. J Water Process Eng 5:136–142. https://doi.org/10.1016/j.jwpe.2014.06.003

    Article  Google Scholar 

  • Tan HF, Ooi B, Leo C (2020) Future perspectives of nanocellulose-based membrane for water treatment. J Water Process Eng 37:101502

    Article  Google Scholar 

  • Tayeb AH, Amini E, Ghasemi S, Tajvidi M (2018) Cellulose nanomaterials—Binding properties and applications: a review. Molecules 23:2684

    Article  Google Scholar 

  • Thennakoon MSUG, Ching YC, Chuah CH, Noorsaadah AR, Liu NS (2020) Recent advances in celluloses and their hybrids for stimuli-responsive drug delivery. Int J Biol Macromol 158:670–688

    Article  Google Scholar 

  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. In: Molecular, clinical and environmental toxicology. Springer, pp 133–164

  • Trache D, Hussin MH, Haafiz MM, Thakur VK (2017) Recent progress in cellulose nanocrystals: sources and production. Nanoscale 9:1763–1786

    Article  CAS  Google Scholar 

  • Tshikovhi A, Mishra SB, Mishra AK (2020) Nanocellulose-based composites for the removal of contaminants from wastewater. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2020.02.221

    Article  Google Scholar 

  • Udeni Gunathilake TMS, Ching YC, Chuah CH, Sabariah J, Lin PC (2016) Fabrication of porousmaterials from natural/synthetic biopolymers and their composites. Materials 9:991

    Article  Google Scholar 

  • Udeni Gunathilake TMS, Ching YC, Chuah CH (2017) Enhancement of curcumin bioavailability using nanocellulose reinforced chitosan hydrogel. Polymers 9:64

    Article  Google Scholar 

  • Vadakkekara GJ, Thomas S, Nair CR (2019) Maleic acid modified cellulose for scavenging lead from water. Int J Biol Macromol 129:293–304

    Article  CAS  Google Scholar 

  • Vadakkekara GJ, Thomas S, Nair CR (2020) Sodium itaconate grafted nanocellulose for facile elimination of lead ion from water. Cellulose 27:3233–3248. https://doi.org/10.1007/s10570-020-02983-4

    Article  CAS  Google Scholar 

  • Voisin H, Bergström L, Liu P, Mathew AP (2017) Nanocellulose-based materials for water purification. Nanomaterials 7:57

    Article  Google Scholar 

  • Wadhawan S, Jain A, Nayyar J, Mehta SK (2020) Role of nanomaterials as adsorbents in heavy metal ion removal from waste water: A review. J Water Process Eng 33:101038. https://doi.org/10.1016/j.jwpe.2019.101038

    Article  Google Scholar 

  • Wang D (2019) A critical review of cellulose-based nanomaterials for water purification in industrial processes. Cellulose 26:687–701. https://doi.org/10.1007/s10570-018-2143-2

    Article  CAS  Google Scholar 

  • Wang X, Guo Y, Yang L, Han M, Zhao J, Cheng X (2012) Nanomaterials as sorbents to remove heavy metal ions in wastewater treatment. J Environ Anal Toxicol 2:154–158

    Article  Google Scholar 

  • Wang R et al (2013) Nanofibrous microfiltration membranes capable of removing bacteria, viruses and heavy metal ions. J Membr Sci 446:376–382. https://doi.org/10.1016/j.memsci.2013.06.020

    Article  CAS  Google Scholar 

  • Wu Y et al (2019) Environmental remediation of heavy metal ions by novel-nanomaterials: a review. Environ Pollut 246:608–620

    Article  CAS  Google Scholar 

  • Xie H, Du H, Yang X, Si C (2018) Recent strategies in preparation of cellulose nanocrystals and cellulose nanofibrils derived from raw cellulose materials. Int J Polym Sci. https://doi.org/10.1155/2018/7923068

    Article  Google Scholar 

  • Xu P et al (2012) Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ 424:1–10

    Article  CAS  Google Scholar 

  • Yadav TP, Yadav RM, Singh DP (2012) Mechanical milling: a top down approach for the synthesis of nanomaterials and nanocomposites. Nanosci Nanotechnol 2:22–48

    Article  Google Scholar 

  • Yang J, Ching YC, Chuah CH (2019) Applications of lignocellulosic fibers and lignin in bioplastics: a review. Polymers 11:751–777

    Article  CAS  Google Scholar 

  • Yang J, Ching YC, Chuah CH, Liou NS (2020) Preparation and characterization of starch/empty fruit bunch-based bioplastic composites reinforced with epoxidized oils. Polymers 13:94–109

    Article  Google Scholar 

  • Yang R, Aubrecht KB, Ma H, Wang R, Grubbs RB, Hsiao BS, Chu B (2014) Thiol-modified cellulose nanofibrous composite membranes for chromium (VI) and lead (II) adsorption. Polymer 55:1167–1176

    Article  CAS  Google Scholar 

  • Yang J, Ching YC, Chuah CH, Liou NS (2021) Preparation and characterization of starch/empty fruit bunch-based bioplastic composites reinforced with epoxidized oils. Polymers 13:94

    Article  CAS  Google Scholar 

  • Yu X, Tong S, Ge M, Wu L, Zuo J, Cao C, Song W (2013) Adsorption of heavy metal ions from aqueous solution by carboxylated cellulose nanocrystals. J Environ Sci 25:933–943. https://doi.org/10.1016/S1001-0742(12)60145-4

    Article  CAS  Google Scholar 

  • Zhang Y, Nypelö T, Salas C, Arboleda J, Hoeger IC, Rojas OJ (2013) Cellulose nanofibrils. J Renew Mater 1:195–211

    Article  Google Scholar 

  • Zhu C, Liu P, Mathew AP (2017a) Self-assembled TEMPO cellulose nanofibers: graphene oxide-based biohybrids for water purification. ACS Appl Mater Interfaces 9:21048–21058

    Article  CAS  Google Scholar 

  • Zhu Q et al (2017b) Activable carboxylic acid functionalized crystalline nanocellulose/PVA-co-PE composite nanofibrous membrane with enhanced adsorption for heavy metal ions. Sep Purif Technol 186:70–77

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from the Ministry of Education Malaysia: PR006-2019A; University Malaya research grant: GPF002A-2019 and RMF0372-2021 for the success of this project.

Funding

Ministry of Education Malaysia: PR006-2019A; University Malaya research grant: GPF002A-2019 and RMF0372-2021.

Author information

Authors and Affiliations

Authors

Contributions

TM: Conceptualization and writing-original draft preparation, CYC: Supervision and reviewing and NMNS: Supervision and reviewing.

Corresponding author

Correspondence to C. Y. Chee.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Editorial responsibility: J Aravind.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marimuthu, T., Chee, C.Y. & Sulaiman, N.M.N. A review on the use of cellulose nanomaterials for wastewater remediation of heavy metal ions. Int. J. Environ. Sci. Technol. 20, 3421–3436 (2023). https://doi.org/10.1007/s13762-022-04209-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-022-04209-5

Keywords

Navigation