Skip to main content

Advertisement

Log in

Bioremoval of cadmium by co-cultivated bacterial strains, Bacillus paramycoides and Bacillus subtilis, in a pilot-scale phyto- and rhizoremediation approach

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Cadmium is a highly toxic environmental pollutant that is known to show lethal effects on the macro- and microorganisms. The current study is aimed at the isolation and screening of cadmium-resistant bacteria from contaminated soil samples collected from the rhizosphere region wet land paddy fields near Katpadi, Vellore. Cadmium concentration in the rhizosphere soil samples was estimated by atomic absorption spectroscopy (AAS) and was found to be 2.59 mg/kg. A total of four morphologically distinct bacterial colonies were isolated and named VITATJM1, VITATJM2, VITATJM3 and VITATJM4. Maximum tolerable concentration (MTC) studies were also performed to establish the maximum concentration of Cd at which the bacteria can survive. The cultures were able to tolerate a maximum cadmium concentration of up to 500 ppm. PGPR tests such as ammonia production, phosphate solubilization, hydrogen cyanide (HCN) production and indole-3-acetic acid (IAA) were performed, and cultures VITATJM1 and VITATJM4 were found to be strongly effective. Similarly, isolates were also capable of forming biofilms. Pot culture studies were performed using Pennisetum purpureum plants, with different concentrations of cadmium in combination with bacterial culture (VITATJM1 and VITATJM4) for 30 days. From the current study, it can be concluded that application of P. purpureum augmented with bacteria in the rhizosphere could be an effective strategy for the removal of cadmium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig.2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abaga NOZ, Dousset S, Mbengue S, Munier-Lamy C (2014) Is vetiver grass of interest for the remediation of Cu and Cd to protect marketing gardens in Burkina Faso? Chemosphere 113:42–47

    Article  CAS  Google Scholar 

  • Abdel-Salam MA (2012) Chemical and phyto-remediation of clayey and sandy textured soils polluted with cadmium. Am Eurasian J Agric Environ Sci 12(6):689–693

    CAS  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91(7):869–881

    Article  CAS  Google Scholar 

  • Ali H, Khan E, Ilahi I (2019) Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. J Chem 2019:1–14

    Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta Vulgaris. Plant Physiol 24(1):1

    Article  CAS  Google Scholar 

  • Ayano H, Miyake M, Terasawa K, Kuroda M, Soda S, Sakaguchi T, Ike M (2014) Isolation of a selenite-reducing and cadmium-resistant bacterium Pseudomonas sp. strain RB for microbial synthesis of CdSe nanoparticles. J Biosci Bioeng 117(5):576–581

    Article  CAS  Google Scholar 

  • Bakker AW, Schippers B (1987) Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp-mediated plant growth-stimulation. Soil Biol Biochem 19(4):451–457

    Article  CAS  Google Scholar 

  • Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L Czern). Soil Biol Biochem 37(2):241–250

    Article  CAS  Google Scholar 

  • Boyanov MI, Kelly SD, Kemner KM, Bunker BA, Fein JB, Fowle DA (2003) Adsorption of cadmium to Bacillus subtilis bacterial cell walls: a pH-dependent X-ray absorption fine structure spectroscopy study. Geochim Cosmochim Acta 67(18):3299–3311

    Article  CAS  Google Scholar 

  • Brekken A, Steinnes E (2004) Seasonal concentrations of cadmium and zinc in native pasture plants: consequences for grazing animals. Sci Total Environ 326(1–3):181–195

    Article  CAS  Google Scholar 

  • Cappuccino JG, Sherman N (2011) Microbiology: a laboratory manual, 9th edn. International Pearson Education

  • Chen Y, Shen Z, Li X (2004) The use of vetiver grass (Vetiveria zizanioides) in the phytoremediation of soils contaminated with heavy metals. Appl Geochem 19(10):1553–1565

    Article  CAS  Google Scholar 

  • Chung H, Park M, Madhaiyan M, Seshadri S, Song J, Cho H, Sa T (2005) Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biol Biochem 37(10):1970–1974

    Article  CAS  Google Scholar 

  • da Silva MN, Mucha AP, Rocha AC, Teixeira C, Gomes CR, Almeida CMR (2014) A strategy to potentiate Cd phytoremediation by saltmarsh plants–autochthonous bioaugmentation. J Environ Manage 134:136–144

    Article  CAS  Google Scholar 

  • Dahmani-Muller H, van Oort F, Gélie B, Balabane M (2000) Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environ Pollut 109(2):231–238

    Article  CAS  Google Scholar 

  • Das A, Osborne JW (2018a) Monitoring the stress resistance of Pennisetum purpureum in Pb (II) contaminated soil bioaugmented with Enterobacter cloacae as defence strategy. Chemosphere 210:495–502

    Article  CAS  Google Scholar 

  • Das A, Osborne JW (2018b) Bioremediation of heavy metals. In: Nanotechnology, food security and water treatment. Springer, Cham, pp 277–311

  • Das A, Belgaonkar P, Raman AS, Banu S, Osborne JW (2017) Bioremoval of lead using Pennisetum purpureum augmented with Enterobacter cloacae-VITPASJ1: a pot culture approach. Environ Sci Pollut Res 24(18):15444–15453

    Article  CAS  Google Scholar 

  • Fein JB, Daughney CJ, Yee N, Davis TA (1997) A chemical equilibrium model for metal adsorption onto bacterial surfaces. Geochim Cosmochim Acta 61(16):3319–3328

    Article  CAS  Google Scholar 

  • Gordon SA, Weber RP (1951) Colorimetric estimation of indoleacetic acid. Plant Physiol 26(1):192

    Article  CAS  Google Scholar 

  • Guo H, Luo S, Chen L, Xiao X, Xi Q, Wei W et al (2010) Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium Bacillus sp. L14. Bioresour Technol 101(22):8599–8605. https://doi.org/10.1016/j.biortech.2010.06.085

    Article  CAS  Google Scholar 

  • Ishii Y, Hamano K, Kang DJ, Idota S, Nishiwaki A (2015) Cadmium phytoremediation potential of napiergrass cultivated in Kyushu, Japan. Appl Environ Soil Sci 2015:1–6

    Article  CAS  Google Scholar 

  • Itusha A, Osborne WJ, Vaithilingam M (2019) Enhanced uptake of Cd by biofilm forming Cd resistant plant growth promoting bacteria bioaugmented to the rhizosphere of Vetiveria zizanioides. Int J Phytorem 21(5):487–495

    Article  CAS  Google Scholar 

  • Jain A, Singh S, Kumar Sarma B, Bahadur Singh H (2012) Microbial consortium–mediated reprogramming of defence network in pea to enhance tolerance against Sclerotinia sclerotiorum. J Appl Microbiol 112(3):537–550

    Article  CAS  Google Scholar 

  • Khan ZR, Midega CA, Wadhams LJ, Pickett JA, Mumuni A (2007) Evaluation of Napier grass (Pennisetum purpureum) varieties for use as trap plants for the management of African stemborer (Busseola fusca) in a push–pull strategy. Entomol Exp Appl 124(2):201–211

    Article  Google Scholar 

  • Khan F et al (2014) Eutrophication: global scenario and local threat to dynamics of aquatic ecosystems. In: Ansari A., Gill S (eds) Eutrophication: causes, consequences and control. Springer, Dordrecht, pp 17–27. https://doi.org/10.1007/978-94-007-7814-6_2

    Chapter  Google Scholar 

  • Liu H, Guo S, Jiao K, Hou J, Xie H, Xu H (2015) Bioremediation of soils co-contaminated with heavy metals and 2, 4, 5-trichlorophenol by fruiting body of Clitocybe maxima. J Hazard Mater 294:121–127

    Article  CAS  Google Scholar 

  • Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29(2):248–258

    Article  CAS  Google Scholar 

  • Mant C, Costa S, Williams J, Tambourgi E (2006) Phytoremediation of chromium by model constructed wetland. Biores Technol 97(15):1767–1772

    Article  CAS  Google Scholar 

  • Marchiol L, Assolari S, Sacco P, Zerbi G (2004) Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multi contaminated soil. Environ Pollut 132(1):21–27. https://doi.org/10.1016/j.envpol.2004.04.001

    Article  CAS  Google Scholar 

  • Morales A, Alvear M, Valenzuela E, Castillo CE, Borie F (2011) Screening, evaluation and selection of phosphate-solubilising fungi as potential biofertiliser. J Soil Sci Plant Nutr 11(4):89–103

    Article  Google Scholar 

  • Naves P, Del Prado G, Huelves L, Gracia M, Ruiz V, Blanco J et al (2008) Measurement of biofilm formation by clinical isolates of Escherichia coli is method-dependent. J Appl Microbiol 105(2):585–590

    Article  CAS  Google Scholar 

  • Ndeddy Aka RJ, Babalola OO (2017) Identification and characterization of Cr-, Cd-, and Ni-tolerant bacteria isolated from mine tailings. Bioremediat J 21(1):1–19

    Article  CAS  Google Scholar 

  • Niu C, Gilbert ES (2004) Colorimetric method for identifying plant essential oil components that affect biofilm formation and structure. Appl Environ Microbiol 70(12):6951–6956

    Article  CAS  Google Scholar 

  • O’Toole GA (2011) Microtiter dish biofilm formation assay. JoVE (j vis Exp) 47:e2437

    Google Scholar 

  • Penrose DM, Glick BR (2001) Levels of ACC and related compounds in exudate and extracts of canola seeds treated with ACC deaminase-containing plant growth-promoting bacteria. Can J Microbiol 47(4):368–372

    Article  CAS  Google Scholar 

  • Pouyat RV, Szlávecz K, Yesilonis ID, Wong CP, Murawski L, Marra P et al (2015) Multi-scale assessment of metal contamination in residential soil and soil fauna: a case study in the Baltimore-Washington metropolitan region, USA. Landsc Urban Plan 142:7–17

    Article  Google Scholar 

  • Qian H, Li J, Sun L, Chen W, Sheng GD, Liu W, Fu Z (2009) Combined effect of copper and cadmium on Chlorella vulgaris growth and photosynthesis-related gene transcription. Aquat Toxicol 94(1):56–61

    Article  CAS  Google Scholar 

  • Roane TM, Pepper IL (1999) Microbial responses to environmentally toxic cadmium. Microb Ecol 38(4):358–364

    Article  CAS  Google Scholar 

  • Saran A, Imperato V, Fernandez L, Gkorezis P, d’Haen J, Merini LJ et al (2020) Phytostabilization of polluted military soil supported by bioaugmentation with PGP-trace element tolerant bacteria isolated from helianthus petiolaris. Agronomy 10(2):204

    Article  CAS  Google Scholar 

  • Sinha A, Lulu S, Vino S, Osborne WJ (2019) Reactive green dye remediation by Alternanthera philoxeroides in association with plant growth promoting Klebsiella sp. VITAJ23: a pot culture study. Microbiol Res 220:42–52

    Article  CAS  Google Scholar 

  • Strezov V, Evans TJ, Hayman C (2008) Thermal conversion of elephant grass (Pennisetum Purpureum Schum) to bio-gas, bio-oil and charcoal. Biores Technol 99(17):8394–8399

    Article  CAS  Google Scholar 

  • Taghavi S, Garafola C, Monchy S, Newman L, Hoffman A, Weyens N et al (2009) Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl Environ Microbiol 75(3):748–757

    Article  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599

    Article  CAS  Google Scholar 

  • Wan L, Zhang H (2012) Cadmium toxicity: effects on cytoskeleton, vesicular trafficking and cell wall construction. Plant Signal Behav 7(3):345–348

    Article  CAS  Google Scholar 

  • Zhang YF, He LY, Chen ZJ, Zhang WH, Wang QY, Qian M, Sheng XF (2011) Characterization of lead-resistant and ACC deaminase-producing endophytic bacteria and their potential in promoting lead accumulation of rape. J Hazard Mater 186(2–3):1720–1725

    Article  CAS  Google Scholar 

  • Zhao Q, Shen Q, Ran W, Xiao T, Xu D, Xu Y (2011) Inoculation of soil by Bacillus subtilis Y-IVI improves plant growth and colonization of the rhizosphere and interior tissues of muskmelon (Cucumis melo L.). Biol Fertil Soils 47(5):507–514

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the VIT management for providing us with the opportunity to conduct our project and also for supporting us with the infrastructure and other facilities.

Author information

Authors and Affiliations

Authors

Contributions

W.J.O. was the guide for this set work. A.S.V and B.T.A. performed the experiments, prepared the materials and worked on essential screening of the strain. M.S.W. helped to frame the work and perform the pot culture experiments. A.S.V., B.T.A. and M.S.W interpreted the results and wrote the manuscript. W.J.O edited and corrected the manuscript.

Corresponding author

Correspondence to W. J. Osborne.

Ethics declarations

Conflict of interest

The authors of this work declare that they have no conflict of interest.

Additional information

Editorial responsibility: Tanmoy Karak.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 259 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viji, A.S., Antony, B.T., Wagh, M.S. et al. Bioremoval of cadmium by co-cultivated bacterial strains, Bacillus paramycoides and Bacillus subtilis, in a pilot-scale phyto- and rhizoremediation approach. Int. J. Environ. Sci. Technol. 19, 7565–7574 (2022). https://doi.org/10.1007/s13762-021-03540-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-021-03540-7

Keywords

Navigation