Skip to main content
Log in

Bioremoval of lead using Pennisetum purpureum augmented with Enterobacter cloacae-VITPASJ1: A pot culture approach

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Lead is a toxic heavy metal discharged into the ecosystem from various industries. Biological remediation strategies have been effective in the bioremoval of lead. In our current study, a phytobacterial system using Pennisetum purpureum along with lead-resistant bacterium (LRB) was employed for the uptake of lead. The LRB was obtained from lead-contaminated sites. The isolate VITPASJ1 was found to be highly tolerant to lead and was identified as an effective plant growth-promoting bacterium. The 16S rRNA sequencing revealed VITPASJ1 to be the closest neighbour of Enterobacter cloacae. The lead-resistant gene pbrA in the plant and the bacterium were amplified using a specific primer. The uptake of lead was studied by phytoremediation and rhizoremediation set-ups where the soil was supplemented with various concentrations of lead (50, 100, 150 mg/kg). The plants were uprooted at regular intervals, and the translocation of lead into the plant was determined by atomic absorption spectroscopy. The root length, shoot height and chlorophyll content were found to be higher in the rhizoremediation set-up when compared to the phytoremediation set-up. The scanning electron microscopic micrographs gave a clear picture of increased tissue damage in the root and shoot of the phytoremediation set-up as compared to the rhizoremediation set-up with LRB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agnello AC, Bagard M, Van Hullebusch ED, Esposito G, Huguenot D (2016) Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation. Sci Total Environ 563:693–703. doi:10.1016/j.scitotenv.2015.10.061

    Article  Google Scholar 

  • Ahmed M, Husain T, Sheikh AH, Hussain SS, Siddiqui MF (2006) Phytosociology and structure of Himalayan forests from different climatic zones of Pakistan. Pak J Bot 38(2):361

    Google Scholar 

  • Astuti RI, Wahyudi AT (2010) Screening of Pseudomonas sp. isolated from rhizosphere of soybean plant as plant growth promoter and biocontrol agent. Am J Agric Biol Sci 6(1):134–141. doi:10.3844/ajabssp.2011.134.141

    Google Scholar 

  • Belimov AA, Safronova VI, Sergeyeva TA, Egorova TN, Matveyeva VA, Tsyganov VE, Borisov AY, Tikhonovich IA, Kluge C, Preisfeld A, Dietz KJ (2001) Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 47(7):642–652

    Article  CAS  Google Scholar 

  • Bettini PP, Marvasi M, Fani F, Lazzara L, Cosi E, Melani L, Mauro ML (2016) Agrobacterium rhizogenes rolB gene affects photosynthesis and chlorophyll content in transgenic tomato (Solanum lycopersicum L.) plants. J Plant Physiol. doi:10.1016/j.jplph.2016.07.010

    Google Scholar 

  • Borremans B, Hobman JL, Provoost A, Brown NL, van Der Lelie D (2001) Cloning and functional analysis of the pbr lead resistance determinant of Ralstonia metallidurans CH34. J Bacteriol 183(19):5651–5658. doi:10.1128/jb.183.19.5651-5658.2001

    Article  CAS  Google Scholar 

  • Brekken A, Steinnes E (2004) Seasonal concentrations of cadmium and zinc in native pasture plants: consequences for grazing animals. Sci Total Environ 326(1):181–195. doi:10.1016/j.scitotenv.2003.11.023

    Article  CAS  Google Scholar 

  • Cappuccino JC, Sherman N (1992) In: microbiology: a laboratory manual, New York, pp 125–179

  • Cenkci S, Ciğerci İH, Yıldız M, Özay C, Bozdağ A, Terzi H (2010) Lead contamination reduces chlorophyll biosynthesis and genomic template stability in Brassica rapa L. Environ Exp Bot 67(3):467–473. doi:10.1016/j.envexpbot.2009.10.001

    Article  CAS  Google Scholar 

  • Chamam A, Sanguin H, Bellvert F, Meiffren G, Comte G, Wisniewski-Dyé F, Prigent-Combaret C (2013) Plant secondary metabolite profiling evidences strain-dependent effect in the Azospirillum-Oryza sativa association. Phytochemistry 87:65–77. doi:10.1016/j.phytochem.2012.11.009

    Article  CAS  Google Scholar 

  • Chatterjee S, Mukherjee A, Sarkar A, Roy P (2012) Bioremediation of lead by lead-resistant microorganisms, isolated from industrial sample. doi: 10.4236/abb.2012.33041

  • Das S, Raj R, Mangwani N, Dash HR, Chakraborty J (2014) 2-Heavy metals and hydrocarbons: adverse effects and mechanism of toxicity. Microbial Biodegradation and Bioremediation, Elsevier, Oxford, pp 23–54. doi:10.1016/B978-0-12-800021-2.00002-9

    Google Scholar 

  • Deshmukh VP, Thakare PV, Chaudhari US, Gawande PA (2007) A simple method for isolation of genomic DNA from fresh and dry leaves of Terminalia arjuna (Roxb.) Wight and Arnot. Electron J Biotechnol 10(3):468–472. doi:10.2225/vol10-issue3-fulltext-5

    Article  CAS  Google Scholar 

  • Farrell G, Simons SA, Hillocks RJ (2002) Pests, diseases and weeds of Napier grass, Pennisetum purpureum: a review. Int J Pest Manage 48(1):39–48. doi:10.1080/09670870110065578

    Article  Google Scholar 

  • Huang SH (2014) Fractional distribution and risk assessment of heavy metal contaminated soil in vicinity of a lead/zinc mine. Trans Nonferrous Met Soc China 24(10):3324–3331. doi:10.1016/s1003-6326(14)63473-7

    Article  CAS  Google Scholar 

  • Jarosławiecka A, Piotrowska-Seget Z (2014) Lead resistance in micro-organisms. Microbiology 160(1):12–25. doi:10.1099/mic.0.070284-0

    Article  Google Scholar 

  • Khan ZR, Midega CAO, Wadhams LJ, Pickett JA, Mumuni A (2007) Evaluation of Napier grass (Pennisetum purpureum) varieties for use as trap plants for the management of African stemborer (Busseola fusca) in a push–pull strategy. Entomol Exp Applic 124(2):201–211. doi:10.1111/j.1570-7458.2007.00569.x

    Article  Google Scholar 

  • Khan FA, Naushin F, Rehman F, Masoodi A, Irfan M, Hashmi F, Ansari AA (2014) Eutrophication: global scenario and local threat to dynamics of aquatic ecosystems. In Eutrophication. Springer, Netherlands, pp 17–27. doi:10.1007/978-94-007-7814-6_2

  • Kızılkaya B, Doğan F, Akgül R, Türker G (2012) Biosorption of Co(II), Cr(III), Cd(II), and Pb(II) ions from aqueous solution using nonliving Neochloris Pseudoalveolaris Deason & Bold: equilibrium, thermodynamic, and kinetic study. J Dispers Sci Technol 33(7):1055–1065. doi:10.1080/01932691.2011.599214

    Article  Google Scholar 

  • Kumar M, Upreti RK (2000) Impact of lead stress and adaptation in Escherichia coli. Ecotoxicol Environ Saf 47(3):246–252. doi:10.1006/eesa.2000.1960

    Article  CAS  Google Scholar 

  • Little BJ (2011) Earthworm uptake and sequestration of lead in a terrestrial environment. The Ohio State University, Columbus

    Google Scholar 

  • Mant C, Costa S, Williams J, Tambourgi E (2006) Phytoremediation of chromium by model constructed wetland. Bioresour Technol 97(15):1767–1772. doi:10.1016/j.biortech.2005.09.010

    Article  CAS  Google Scholar 

  • Marchiol L, Assolari S, Sacco P, Zerbi G (2004) Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil. Environ Pollut 132(1):21–27. doi:10.1016/j.envpol.2004.04.001

    Article  CAS  Google Scholar 

  • Marques AP, Moreira H, Franco AR, Rangel AO, Castro PM (2013) Inoculating Helianthus annuus (sunflower) grown in zinc and cadmium contaminated soils with plant growth promoting bacteria—effects on phytoremediation strategies. Chemosphere 92(1):74–83. doi:10.1016/j.chemosphere.2013.02.055

    Article  CAS  Google Scholar 

  • Masalha J, Kosegarten H, Elmaci Ö, Mengel K (2000) The central role of microbial activity for iron acquisition in maize and sunflower. Biol Fertil Soils 30(5–6):433–439. doi:10.1007/s003740050021

    Article  CAS  Google Scholar 

  • Morales A, Alvear M, Valenzuela E, Castillo CE, Borie F (2011) Screening, evaluation and selection of phosphate-solubilising fungi as potential biofertiliser. J Soil Sci Plant Nutr 11(4):89–103. doi:10.4067/s0718-95162011000400007

    Article  Google Scholar 

  • Oh BT, Hur H, Lee KJ, Shanthi K, Soh BY, Lee WJ, Kamala-Kannan S (2011) Suppression of Phytophthora blight on pepper (Capsicum annuum L.) by bacilli isolated from brackish environment. Biocontrol Sci Techn 21(11):1297–1311. doi:10.1080/09583157.2011.618264

    Article  Google Scholar 

  • Pouyat RV, Szlavecz K, Yesilonis ID, Wong CP, Murawski L, Marra P, Lev S (2015) Multi-scale assessment of metal contamination in residential soil and soil fauna: a case study in the Baltimore–Washington metropolitan region, USA. Landscape Urban Plan 142:7–17. doi:10.1016/j.landurbplan.2015.05.001

    Article  Google Scholar 

  • Saadani O, Fatnassi IC, Chiboub M, Abdelkrim S, Barhoumi F, Jebara M, Jebara SH (2016) In situ phytostabilisation capacity of three legumes and their associated Plant Growth Promoting Bacteria (PGPBs) in mine tailings of northern Tunisia. Ecotoxicol Environ Saf 130:263–269. doi:10.1016/j.ecoenv.2016.04.032

    Article  CAS  Google Scholar 

  • Sardans J, Montes F, Peñuelas J (2010) Determination of As, Cd, Cu, Hg and Pb in biological samples by modern electrothermal atomic absorption spectrometry. Spectrochim Acta Part B 65(2):97–112. doi:10.1016/j.sab.2009.11.009

    Article  Google Scholar 

  • Schneegurt MA, Tucker DL, Ondr JK, Sherman DM, Sherman LA (2000) Metabolic rhythms of a diazotrophic cyanobacterium, Cyanothece sp. strain ATCC 51142, heterotrophically grown in continuous dark. J Phycol 36(1):107–117. doi:10.1046/j.1529-8817.2000.99152.x

    Article  CAS  Google Scholar 

  • Strezov V, Evans TJ, Hayman C (2008) Thermal conversion of elephant grass (Pennisetum purpureum Schum) to bio-gas, bio-oil and charcoal. Bioresour Technol 99(17):8394–8399. doi:10.1016/j.biortech.2008.02.039

    Article  CAS  Google Scholar 

  • Talbot MJ, White RG (2013) Methanol fixation of plant tissue for scanning electron microscopy improves preservation of tissue morphology and dimensions. Plant Methods 9(1):1. doi:10.1186/1746-4811-9-36

    Article  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Bio Evol 24:1596–1599. doi:10.1093/molbev/msm092

    Article  CAS  Google Scholar 

  • Teymouri M, Akhtari J, Karkhane M, Marzban A (2016) Assessment of phosphate solubilization activity of Rhizobacteria in mangrove forest. Biocatal Agric Biotechnol 5:168–172. doi:10.1016/j.bcab.2016.01.012

    Google Scholar 

  • Thakuria D, Schmidt O, Finan D, Egan D, Doohan FM (2010) Gut wall bacteria of earthworms: a natural selection process. The ISME journal 4(3):357–366. doi:10.1038/ismej.2009.124

    Article  Google Scholar 

  • United States Environmental Protection Agency (USEPA), Hazard summary. Lead compounds 2004. http://www.epa.gov/ttn/atw/hlthef/ lead.html

  • Vogel-Mikuš K, Drobne D, Regvar M (2005) Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonisation of pennycress Thlaspi praecox Wulf.(Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia. Environ Pollut 133(2):233–242. doi:10.1016/j.envpol.2004.06.021

    Article  Google Scholar 

  • Wijnhoven S, Leuven RSEW, Van Der Velde G, Jungheim G, Koelemij EI, deVries FT, Eijsackers HJP, Smits AJM (2007) Heavy-metal concentrations in small mammals from a diffusely polluted floodplain: importance of species-and location-specific characteristics. Arch Environ Contam Toxicol 52:603–613. doi:10.1007/s00244-006-0124-1

    Article  CAS  Google Scholar 

  • Yu H, Ni SJ, He ZW, Zhang CJ, Nan X, Kong B, Weng ZY (2014) Analysis of the spatial relationship between heavy metals in soil and human activities based on landscape geochemical interpretation. J Geochem Explor 146:136–148. doi:10.1016/j.gexplo.2014.08.010

    Article  CAS  Google Scholar 

  • Zhang X, Xia H, Li Z, Zhuang P, Gao B (2010) Potential of four forage grasses in remediation of Cd and Zn contaminated soils. Bioresour Technol 101(6):2063–2066. doi:10.1016/j.biortech.2009.11.065

    Article  CAS  Google Scholar 

  • Zhang YF, He LY, Chen ZJ, Zhang WH, Wang QY, Qian M, Sheng XF (2011) Characterization of lead-resistant and ACC deaminase-producing endophytic bacteria and their potential in promoting lead accumulation of rape. J Hazard Mater 186(2):1720–1725. doi:10.1016/j.jhazmat.2010.12.069

    Article  CAS  Google Scholar 

  • Zhang X, Li M, He X, Hang R, Huang X, Wang Y, Yao X, Tang B (2016) Antibacterial activity of single crystalline silver-doped anatase TiO2 nanowire arrays. Appl Surf Sci 372:139–144. doi:10.1016/j.apsusc.2015.12.094

    Article  CAS  Google Scholar 

  • Zhou P, Yang F, Ren X, Huang B, An Y (2014) Phytotoxicity of aluminum on root growth and indole-3-acetic acid accumulation and transport in alfalfa roots. Environ Exp Bot 104:1–8. doi:10.1016/j.envexpbot.2014.02.018

    Article  CAS  Google Scholar 

  • Złoch M, Thiem D, Gadzała-Kopciuch R, Hrynkiewicz K (2016) Synthesis of siderophores by plant-associated metallotolerant bacteria under exposure to Cd2+. Chemosphere 156:312–325. doi:10.1016/j.chemosphere.2016.04.130

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the VIT management for providing lab facilities to carry out their research. They also would like to extend their appreciations to the farm management in Brahmapuram and the nursery of CBMR, VIT University, for providing the required plants and the space to carry out the study, respectively. The authors extend their heartfelt gratitude to both the SEM facility in SBST and the TBI facilities in VIT University. This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jabez W. Osborne.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights and informed consent

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Responsible editor: Elena Maestri

Electronic supplementary material

ESM 1

(DOCX 8.90 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A., Belgaonkar, P., Raman, A.S. et al. Bioremoval of lead using Pennisetum purpureum augmented with Enterobacter cloacae-VITPASJ1: A pot culture approach. Environ Sci Pollut Res 24, 15444–15453 (2017). https://doi.org/10.1007/s11356-017-8988-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8988-3

Keywords

Navigation