Skip to main content
Log in

PAH bioaccumulation in two polluted sites along the eastern coast of the Red Sea, Saudi Arabia

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Significant amounts of polycyclic aromatic hydrocarbons (PAHs) accumulate in specific habitats and organisms, such as mangroves and benthic organisms, due to the PAHs’ direct attachment to sediments in the environment or the feeding activity of the organisms, especially in contaminated coastal areas. The present study investigates the effect of sewage effluents on the bioaccumulation of PAHs in two polluted sites along the coastal area of Jeddah city. PAH levels in the mangrove sediments, roots, and leaves ranged between 230.09 and 17.94, 32.79 and 409.86, and 111.14 and 795.2 ng/g, respectively, following the general trend of sediments < roots < leaves. Though all mangrove roots showed bioaccumulation factors (BAFroots) higher than 1, the leaves bioaccumulation factors (BAFleaves) exceeded 26, clearly indicating PAHs accumulated not only via a translocation pathway but also from the surrounding atmosphere. These results suggest that mangroves could serve as an in situ eco-friendly resource for the dissipation of PAHs in marine sediments and the atmosphere. Although higher levels of PAHs were detected in Al-Arbaeen Lagoon sediments (ranging between 89.18 and 1056.46 ng/g), lower levels of PAHs were observed in the gastropod Littorina Littorea (range 113.21–265.96 ng/g) in this area, with biota-sediment accumulation factors (BSAF) ranging from 0.23 to 2.10. Only one Al-Arbaeen site presented sediments with a petrogenic origin, with a BSAF value higher than 1 in the gastropod. Based on sediment quality guidelines, adverse biological effects should rarely occur at the studied sites under the present PAH levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmed A, Ohlson M, Hoque S, Moula MG (2010) Chemical composition of leaves of a mangrove tree (Sonneratia apetala Buch.-Ham.) and their correlation with some soil variables. Bangladesh J Bot 39(1):61–69

    Google Scholar 

  • Al-Farawati R (2010) Environmental conditions of the coastal waters of Southern Corinche, Jeddah, Eastern Red Sea: physico-chemical approach. Aust J Basic Appl Sci 4(8):3324–3337

    CAS  Google Scholar 

  • Al-Farawati RK, El-Maradny A, Niaz GR (2009) Fecal sterols and PAHs in sewage polluted marine environment along the eastern Red Sea coast, South of Jeddah, Saudi Arabia. Indian J Geo-Mar Sci 38(4):404–410

    CAS  Google Scholar 

  • Al-Farraj S, El-Gendy A, Al Kahtani S, El-Hedeny M (2012) The impact of sewage pollution on polychaetes of Al Khumrah, South of Jeddah, Saudi Arabia. Res J Environ Sci 6(2):77–87

    CAS  Google Scholar 

  • Alghamdi MA, Alam MS, Yin J, Stark C, Jang E, Harrison RM, Shamy M, Khoder MI, Shabbaj II (2015) Receptor modelling study of polycyclic aromatic hydrocarbons in Jeddah Saudi Arabia. Sci Total Environ 506:401–408. https://doi.org/10.1016/j.scitotenv.2014.10.056

    Article  CAS  Google Scholar 

  • Ali AA, Elazein EM, Alian MA (2011) Investigation of heavy metals pollution in water, sediment and fish at Red Sea-Jeddah Coast-KSA at two different locations. J Appl Environ Biol Sci 1:630–637

    Google Scholar 

  • Al-Sghayer R, Salmiaton A, Mohammad T, Idris A, Ishak CF (2019) Assessment of growth characteristics due to polycyclic aromatic hydrocarbons uptake by two different wetland plants (Phragmites karka and Vetiveria zizanioides). Int J Eng Sci Technol 14(6):3406–3420

    Google Scholar 

  • Ankley GT, Cook PM, Carlson AR, Call DJ, Swenson JA, Corcoran HF, Hoke RA (1992) Bioaccumulation of PCBs from sediments by oligochaetes and fishes: comparison of laboratory and field studies. Can J Fish Aquat Sci 49(10):2080–2085

    CAS  Google Scholar 

  • Arienzo M, Donadio C, Mangoni O, Bolinesib F, Stanislaoa C, Trifuoggic M, Toscanesic M, Di Natalec G, Ferrara L (2017) Characterization and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in the sediments of Gulf of Pozzuoli (Campania, Italy). Mar Pollut Bull 124(1):480–487. https://doi.org/10.1016/j.marpolbul.2017.07.006

    Article  CAS  Google Scholar 

  • Bach PB, Kelley MJ, Tate RC, McCrory DC (2003) Screening for lung cancer: a review of the current literature. Chest 123(1):72S–82S

    Google Scholar 

  • Barron MG, Holder E (2003) Are exposure and ecological risks of PAHs underestimated at petroleum contaminated sites? Hum Ecol Risk Assess 9(6):1533–1545

    CAS  Google Scholar 

  • Basaham A, Rifaat A, El-Mamoney M, El Sayed M (2009) Re-evaluation of the impact of sewage disposal on coastal sediments of the Southern Corniche, Jeddah, Saudi Arabia. J KAU Mar Sci 20(1):109–126

    Google Scholar 

  • Bashir MEA, El-Maradny A, El-Sherbiny M, Rasiq K, Orif M (2017) Bio-concentration of polycyclic aromatic hydrocarbons in the grey Mangrove (Avicennia marina) along eastern coast of the Red Sea. Open Chem 15(1):344–351

    CAS  Google Scholar 

  • Bei LB, Ping W, Li C, Yong Z (2011) Effects of aging and flooding on sorption of PAHs in mangrove sediment. Fresenius Environ Bull 20(3):623–630

    CAS  Google Scholar 

  • Bianco F, Race M, Papirio S, Esposito G (2020a) Removal of polycyclic aromatic hydrocarbons during anaerobic biostimulation of marine sediments. Sci Total Environ 709:136–141

    Google Scholar 

  • Bianco F, Gelsomino Monteverde G, Race M, Papirio S, Esposito G (2020b) Comparing performances, costs and energy balance of ex situ remediation processes for PAH-contaminated marine sediments. Environ Sci Pollut Res 27(16):19363–19374. https://doi.org/10.1007/s11356-020-08379-y

    Article  CAS  Google Scholar 

  • Binelli A, Sarkar SK, Chatterjee M, Riva C, Parolini MD, Bhattacharya AK, Satpathy KK (2008) A comparison of sediment quality guidelines for toxicity assessment in the Sunderban wetlands (Bay of Bengal, India). Chemosphere 73(7):1129–1137

    CAS  Google Scholar 

  • Boonyatumanond R, Wattayakorn G, Togo A, Takada H (2006) Distribution and origins of polycyclic aromatic hydrocarbons (PAHs) in riverine, estuarine, and marine sediments in Thailand. Mar Pollut Bull 52(8):942–956. https://doi.org/10.1016/j.marpolbul.2005.12.015

    Article  CAS  Google Scholar 

  • Brillant S (1999) The marine food web accumulation of toxins in Saint John harbor, New Brunswick, Canada. MS, University of New Brunswick

  • Cao Q, Chen G, Wang H, Qin J, Huang X (2009) Distribution and sources of PAHs in surface sediments of Shantou mangrove wetlands, China. Fresenius Environ Bull 18(10):1788–1797

    CAS  Google Scholar 

  • CCME (Canadian Council of Ministers of the Environment) (1999) Protocol for the derivation of Canadian sediment quality guidelines for the protection of aquatic life. CCME EPC‐98E. Prepared by Environment Canada, Guideline Division, Technical Secretariat of the CCME Task Group on Water Quality Guidelines. Ottawa (ON). P.35

  • CCME (Canadian Council of Ministers of the Environment) (2010) Interim Canadian environmental quality criteria for contaminated sites. CCME, Winnipeg. Canadian soil quality guidelines for potentially carcinogenic and other PAHs: Scientific criteria document. CCME, Winnipeg. P. 216

  • Chang AL, Blakeslee AM, Miller AW, Ruiz GM (2011) Establishment failure in biological invasions: a case history of Littorina littorea in California, USA. PLoS ONE 6(1):e16035. https://doi.org/10.1371/journal.pone.0016035

    Article  CAS  Google Scholar 

  • Davis LC, Castro-Diaz S, Zhang Q, Erickson LE (2002) Benefits of vegetation for soils with organic contaminants. Crit Rev Plant Sci 21:457–491

    CAS  Google Scholar 

  • Douglas GS, Emsbo-Mattingly SD, Stout SA, Uhler AD, McCarthy KJ (2007) Chemical fingerprinting of hydrocarbons and polychlorinated biphenyls. In: Murphy B, Morrison R (eds) Introduction to environmental forensics, 2nd edn. Academic Press, New York, pp 317–459

    Google Scholar 

  • Duran R, Cravo-Laureau C (2016) Role of environmental factors and microorganisms in determining the fate of polycyclic aromatic hydrocarbons in the marine environment. FEMS Microbiol Rev 40(6):814–830. https://doi.org/10.1093/femsre/fuw031

    Article  CAS  Google Scholar 

  • El Nemr A, El-Sikaily A, Khaled A, Said TO, Abd-Alla AM (2004) Determination of hydrocarbons in mussels from the Egyptian Red Sea coast. Environ Monit Assess 96(1–3):251–261

    Google Scholar 

  • El Sayed MA, Al Farawati RK, El Maradny AA, Shaban YA, Rifaat AE (2015) Environmental status and nutrients and dissolved organic carbon budget of two Saudi Arabian Red Sea coastal inlets: a snapshot statement. Environ Earth Sci 74(12):7755–7767

    Google Scholar 

  • El-Maradny A, Turki AJ, Shaban YA, Sultan KM (2015) Levels and distribution of olychlorinated biphenyls in Jeddah coastal sediments, Red Sea, Saudi Arabia. J Chem Soc Pak 37(3):599–611

    Google Scholar 

  • El-Maradny AAE-A, Turki AJ, Shaban YA, Alqubati AM (2016) Levels and probable sources of hydrocarbons in the sediments of Jeddah coast, Red Sea, Saudi Arabia. J Chem Soc Pak 38(2):369–378

    Google Scholar 

  • El-Sayed MA, Basaham AS (2004) Speciation and mobility of some heavy metals in the coastal sediments of Jeddah, Eastern Red Sea. Arab Gulf NJ Sci Res 22(4):226–240

    CAS  Google Scholar 

  • El-Sikaily A, Khaled A, El Nemr A, Said T, Abd-Alla A (2003) Polycyclic aromatic hydrocarbons and aliphatics in the coral reef skeleton of the Egyptian Red Sea coast. Bull Environ Contam Toxicol 71(6):1252–1259

    CAS  Google Scholar 

  • EPA (United States Environmental Protection Agency) (1993) Provisional guidance for quantitative risk assessment of polycyclic aromatic hydrocarbons. EPA/600/R-93/089.9

  • Finkl CW, Makowski C (2017) Coastal wetlands: alteration and remediation. Springer, Berlin

    Google Scholar 

  • Gaga EO, Ari A (2011) Gas–particle partitioning of polycyclic aromatic hydrocarbons (PAHs) in an urban traffic site in Eskisehir, Turkey. Atmos Res 99(2):207–216

    CAS  Google Scholar 

  • Guo M, Gong Z, Miao R, Rookes J, Cahill D, Zhuang J (2017) Microbial mechanisms controlling the rhizosphere effect of ryegrass on degradation of polycyclic aromatic hydrocarbons in an aged-contaminated agricultural soil. Soil Biol Biochem 113:130–142. https://doi.org/10.1016/j.soilbio.2017.06.006

    Article  CAS  Google Scholar 

  • Gutman I, Stanković S (2007) Why is phenanthrene more stable than anthracene? Maced J Chem Chem Eng 26(2):111–114

    CAS  Google Scholar 

  • Hong Y, Liao D, Chen J, Khan S, Su J, Li H (2015) A comprehensive study of the impact of polycyclic aromatic hydrocarbons (PAHs) contamination on salt marsh plants Spartina alterniflora: implication for plant-microbe interactions in phytoremediation. Environ Sci Pollut Res Int 22(9):7071–7081. https://doi.org/10.1007/s11356-014-3912-6

    Article  CAS  Google Scholar 

  • Hussein RA, Al-Ghanim KA, Abd-El-Atty MM, Mohamed LA (2016) Contamination of Red Sea Shrimp (Palaemon serratus) with polycyclic aromatic hydrocarbons: a health risk assessment. Pol J Environ Stud 25(2):615–620

    CAS  Google Scholar 

  • Kang F, Chen D, Gao Y, Zhang Y (2010) Distribution of polycyclic aromatic hydrocarbons in subcellular root tissues of ryegrass (Lolium multiflorum Lam.). BMC Plant Biol 10(210):2–7. https://doi.org/10.1186/1471-2229-10-210

    Article  CAS  Google Scholar 

  • Keshavarzifard M, Zakaria MP, Sharifi R (2017a) Ecotoxicological and health risk assessment of polycyclic aromatic hydrocarbons (PAHs) in short-neck clam (Paphia undulata) and contaminated sediments in Malacca Strait, Malaysia. Arch Environ Contam Toxicol 73(3):474–487

    CAS  Google Scholar 

  • Keshavarzifard M, Zakaria MP, Hwai TS (2017b) Bioavailability of polycyclic aromatic hydrocarbons (PAHs) to short-neck clam (Paphia undulata) from sediment matrices in mudflat ecosystem of the west coast of Peninsular Malaysia. Environ Geochem Health 39(3):591–610

    CAS  Google Scholar 

  • Kwok CK, Liang Y, Leung SY, Wang H, Dong YH, Young L, Giesy JP, Wong MH (2013) Biota-sediment accumulation factor (BSAF), bioaccumulation factor (BAF), and contaminant levels in prey fish to indicate the extent of PAHs and OCPs contamination in eggs of water birds. Environ Sci Pollut Res 20(12):8425–8434

    CAS  Google Scholar 

  • Le Corre P (1983) Dosage du carbone organique particulaire. Manuel des analyses chimiques en milieu marin. CNEXO, Breast, France, 203

  • Li F, Zeng X, Yang J, Zhou K, Zan Q, Lei A, Tam NF (2014) Contamination of polycyclic aromatic hydrocarbons (PAHs) in surface sediments and plants of mangrove swamps in Shenzhen, China. Mar Pollut Bull 85(2):590–596

    CAS  Google Scholar 

  • Li Q, Wu J, Zhao Z (2018) Spatial and temporal distribution of Polycyclic Aromatic Hydrocarbons (PAHs) in sediments from Poyang Lake, China. PLoS ONE 13(10):e0205484. https://doi.org/10.1371/journal.pone.0205484

    Article  CAS  Google Scholar 

  • Lohmann R, Dapsis M, Morgan EJ, Dekany V, Luey PJ (2011) Determining air–water exchange, spatial and temporal trends of freely dissolved PAHs in an urban estuary using passive polyethylene samplers. Environ Sci Technol 45(7):2655–2662

    CAS  Google Scholar 

  • Long ER, Macdonald DD, Smith SL, Calder FD (1995) Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. J Environ Manag 19(1):81–97

    Google Scholar 

  • Mohebbi-Nozar SL, Zakaria MP, Mortazavi MS, Ismail WR, Jokar KK (2016) Concentration and source identification of cyclic aromatic hydrocarbons (PAHs) in mangrove sediments from north of Persian Gulf. Polycycl Aromat Compd 36(5):601–612

    CAS  Google Scholar 

  • Mueller KE, Shann JR (2006) PAH dissipation in spiked soil: impacts of bioavailability, microbial activity, and trees. Chemosphere 64:1006–1014

    CAS  Google Scholar 

  • Nikolaou A, Kostopoulou M, Petsas A, Vagi M, Lofrano G, Meric S (2009) Levels and toxicity of polycyclic aromatic hydrocarbons in marine sediments. Trac Trends Anal Chem 28(6):653–664

    CAS  Google Scholar 

  • Ololade IA, Lajide L, Oladoja NA, Olumekun VO, Adeyemid OO (2011) Occurrence and dynamics of hydrocarbon in periwinkles Littorina littorea. Turk J Fish Aquat Sc 11(3):451–461

    Google Scholar 

  • Opuene K, Agbozu I, Adegboro O (2009) A critical appraisal of PAH indices as indicators of PAH source and composition in Elelenwo Creek, southern Nigeria. Environmentalist 29(1):47–55

    Google Scholar 

  • Orif M, El-Maradny A (2018) Bio-accumulation of polycyclic aromatic hydrocarbons in the grey mangrove (Avicennia marina) along Arabian Gulf, Saudi coast. Open Chem 16(1):340–348

    CAS  Google Scholar 

  • Osman G, Galal M, Abul-Ezz A, Mohammed A, Abul-Ela M, Hegazy AM (2017) Polycyclic aromatic hydrocarbons (PAHS) accumulation and histopathological biomarkers in gills and mantle of Lanistes carinatus (Molluscs, Ampullariidae) to assess crude oil toxicity. Punjab Univ J Zool 32(1):39–50

    Google Scholar 

  • Paková V, Hilscherová K, Feldmannová M, Bláha L (2006) Toxic effects and oxidative stress in higher plants exposed to polycyclic aromatic hydrocarbons and their N-heterocyclic derivatives. Environ Toxicol Chem 25(12):3238–3245

    Google Scholar 

  • Philippe B, Rocroi J, Frýda J, Hausdorf B, Ponder W, Valdés Á, Warén A (2005) Classification and nomenclator of gastropod families. Malacologia 47(1–2):1–397

    Google Scholar 

  • Qari HA, Hassan IA (2017) Bioaccumulation of PAHs in Padina boryana Alga Collected from a Contaminated Site on the Red Sea, Saudi Arabia. Pol J Environ Stud 26(1):435–439

    CAS  Google Scholar 

  • Rabodonirina S, Net S, Ouddane B, Merhaby D, Dumoulin D, Popescu T, Ravelonandro P (2015) Distribution of persistent organic pollutants (PAHs, Me-PAHs, PCBs) in dissolved, particulate and sedimentary phases in freshwater systems. Environ Pollut 206:38–48

    CAS  Google Scholar 

  • Rainbow P, White S (1989) Comparative strategies of heavy metal accumulation by crustaceans: zinc, copper and cadmium in a decapod, an amphipod and a barnacle. Hydrobiologia 174(3):245–262

    CAS  Google Scholar 

  • Ranjan RK, Routh J, Ramanathan A (2010) Bulk organic matter characteristics in the Pichavaram mangrove–estuarine complex, south-eastern India. J Appl Geochem 25(8):1176–1186

    CAS  Google Scholar 

  • Rasiq K, El-Maradny A, Bashir MEA, Orif M (2018) Polycyclic aromatic hydrocarbons (PAHs) in surface sediments of two polluted lagoons in Saudi Arabia. Pol J Environ Stud 27(1):275–285

    CAS  Google Scholar 

  • Rasiq K, El-Maradny A, Orif M, Bashir ME, Turki AJ (2019) Polycyclic aromatic hydrocarbons in two polluted lagoons, eastern coast of the Red Sea: levels, probable sources, dry deposition fluxes and air-water exchange. Atmos Pollut Res 10(3):880–888

    CAS  Google Scholar 

  • Raza M, Zakaria MP, Hashim NR, Yim UH, Kannan N, Ha SY (2013) Composition and source identification of polycyclic aromatic hydrocarbons in mangrove sediments of Peninsular Malaysia: indication of anthropogenic input. Environ Earth Sci 70:2425–2436

    CAS  Google Scholar 

  • Salomons W, De Rooij N, Kerdijk H, Bril J (1987) Sediments as a source for contaminants. Hydrobiologia 149:13–30

    CAS  Google Scholar 

  • Shete A, Pandit G, Gunale V (2016) Polycyclic aromatic hydrocarbons in the mangrove species: Avicennia Marina from Mumbai, India. J Appl Environ Biol Sci 6(2):6–11

    Google Scholar 

  • Syvitski JP (2007) Principles, methods and application of particle size analysis. Cambridge University Press, Cambridge

    Google Scholar 

  • Tam N, Ke L, Wang X, Wong Y (2001) Contamination of polycyclic aromatic hydrocarbons in surface sediments of mangrove swamps. Environ Pollut 114(2):255–263

    CAS  Google Scholar 

  • Tam NF, Wong TW, Wong Y (2005) A case study on fuel oil contamination in a mangrove swamp in Hong Kong. Mar Pollut Bull 51(8–12):1092–1100

    CAS  Google Scholar 

  • Thomann RV, Connolly JP, Parkerton TF (1992) An equilibrium model of organic chemical accumulation in aquatic food webs with sediment interaction. Environ Toxicol Chem 11(11):615–629

    CAS  Google Scholar 

  • Turki A (2006) Concentration of some heavy metals in surface sediments of a coastal Red Sea lagoon receiving domestic sewage. J Egypt Acad Soc Environ Dev 7:21–40

    Google Scholar 

  • Turki A, Mudarris M (2008) Bacteria and nutrients as pollution indicators in the Al-Nawrus recreational lagoon, Jeddah. J KAU: Mar Sci 19(1):77–93

    Google Scholar 

  • US Environmental Protection Agency (US EPA) (1996) EPA 3630C Silica gel cleanup. Revision 3. Washington, DC: US EPA

  • Vane CH, Harrison I, Kim A, Moss-Hayes V, Vickers B, Hong K (2009) Organic and metal contamination in surface mangrove sediments of South China. Mar Pollut Bull 58(1):134–144

    CAS  Google Scholar 

  • Victoria U (2003) Determination of polychlorinated biphenyls (PCBs) in waste oils by gas chromatography with electron capture detector. EPA Victoria method

  • Wang Z, Fingas M, Shu YY, Sigouin L, Landriault M, Lambert P (1999) Quantitative characterization of PAHs in burn residue and soot samples and differentiation of pyrogenic PAHs from petrogenic PAHs—the 1994 mobile burn study. Environ Sci Technol 33(18):3100–3109

    CAS  Google Scholar 

  • Wang P, Du K-Z, Zhu Y-X, Zhang Y (2008) A novel analytical approach for investigation of anthracene adsorption onto mangrove leaves. Talanta 76(5):1177–1182

    CAS  Google Scholar 

  • Wang P, Zhang Y, Wu T-H (2010) Novel method for in situ visualization of polycyclic aromatic hydrocarbons in mangrove plants. Toxicol Environ Chem 92(10):1825–1829

    CAS  Google Scholar 

  • Wang P, Wu T-H, Zhang Y (2014) In situ investigation the photolysis of the PAHs adsorbed on mangrove leaf surfaces by synchronous solid surface fluorimetry. PLoS ONE 9(1):e84296. https://doi.org/10.1371/journal.pone.0084296

    Article  CAS  Google Scholar 

  • Watts AW, Ballestero TP, Gardner KH (2006) Uptake of polycyclic aromatic hydrocarbons (PAHs) in salt marsh plants Spartina alterniflora grown in contaminated sediments. Chemosphere 62(8):1253–1260

    Google Scholar 

  • Wilson E, Powell E, Wade T, Taylor R, Presley B, Brooks J (1992) Spatial and temporal distributions of contaminant body burden and disease in Gulf of Mexico oyster populations: the role of local and large-scale climatic controls. Helgol Meeresunters 46(2):201–235

    Google Scholar 

  • Wu L, Sun R, Li Y, Sun C (2019) Sample preparation and analytical methods for polycyclic aromatic hydrocarbons in sediment. Trends Environ Anal 24:e00074

    CAS  Google Scholar 

  • Yan W, Chi J, Wang Z, Huang W, Zhang G (2009) Spatial and temporal distribution of polycyclic aromatic hydrocarbons (PAHs) in sediments from Daya Bay, South China. Environ Pollut 157(11):1823–1830

    CAS  Google Scholar 

  • Yunker MB, Macdonald RW, Vingarzan R, Mitchell RH, Goyette D, Sylvestre S (2002) PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem 33(4):489–515

    CAS  Google Scholar 

  • Zhou H, Wong MH (2000) Mercury accumulation in freshwater fish with emphasis on the dietary influence. Water Res 34(17):4234–4242

    CAS  Google Scholar 

Download references

Acknowledgements

Dr. M. El-Amin Bashir is grateful to the deanship of graduate studies at King Abdulaziz University for providing a Ph.D. fellowship.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. El-Maradny.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Editorial responsibility: Samareh Mirkia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 379 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Maradny, A., El-Sherbiny, M.M., Ghandourah, M. et al. PAH bioaccumulation in two polluted sites along the eastern coast of the Red Sea, Saudi Arabia. Int. J. Environ. Sci. Technol. 18, 1335–1348 (2021). https://doi.org/10.1007/s13762-020-02929-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-020-02929-0

Keywords

Navigation