Skip to main content

Advertisement

Log in

Insights into the estimation of heavy metals ions sorption from aqueous environment onto natural zeolite

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

In this work, we present how soft computing approaches can be used to study the sorption performance of natural zeolite to eliminate heavy metals ions including Zn2+, Ni2+, Cd2+, and Pb2+, from aqueous environment. The models include least-squares support-vector machine (LSSVM), genetic programming (GP), particle swarm optimization-adaptive neuro-fuzzy inference system (PSO-ANFIS), and artificial neural network (ANN), as well as multivariate nonlinear regression (PNR). The inputs of the models are electronegativity, hydrated ionic radii (Å), first ionization energy (E1, kJ/mol) and molecular weight (Mw, g/mol) of heavy metal ion, initial pH (pHi, mmol/l) and equilibrium pH (pHe, mmol/l) of solution, and Si concentrations in the aqueous phase (Sie, mg/l). The output of the models is ionic species sorbed per gram of zeolite, f, (mmol/g). The importance of initial concentration, pollutant molecular weight, and acidic functional groups in the sorption of heavy metals is emphasized by sensitivity analysis. Ion exchange variables are determined by the adsorption isotherm expressions: Redlich–Petersen (RP), Langmuir–Freundlich (LF), Dubinin–Radushkevich (DR), Toth (T), Lineweaver–Burk (LB), and modified Dubinin–Radushkevich (MDR). Here, we focus on the applications of smart techniques in modeling complicated sorption systems used in wastewater treatment and environmental pollution control. The % AARD values for LSSVM, GP, ANN, PNR (with 5 order of polynomial), PSO-ANFIS, LF, RP, T, DR, MDR, and LB are 0.77, 5.37, 2.47, 1.23, 1.59, 177.1, 15.1 4215.8, 159.3, 128.9, and 11.2, respectively. The results of the computational techniques are found better than the adsorption isotherms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agrawal A, Deshpande PD, Cecen A, Basavarsu GP, Choudhary AN, Kalidindi SR (2014) Exploration of data science techniques to predict fatigue strength of steel from composition and processing parameters. Integr Mater Manuf Innov 3:8

    Google Scholar 

  • Alinnor IJ (2007) Adsorption of heavy metal ions from aqueous solution by fly ash. Fuel 86:853–857

    CAS  Google Scholar 

  • Altın O, Özbelge HÖ, Doğu T (1998) Use of general purpose adsorption isotherms for heavy metal–clay mineral interactions. J Colloid Interface Sci 198:130–140

    Google Scholar 

  • Archetti F, Giordani I, Vanneschi L (2010) Genetic programming for QSAR investigation of docking energy. Appl Soft Comput 10:170–182

    Google Scholar 

  • Assefi P, Ghaedi M, Ansari A, Habibi MH, Momeni M (2014) Artificial neural network optimization for removal of hazardous dye Eosin Y from aqueous solution using Co2O3-NP-AC: isotherm and kinetics study. J Ind Eng Chem 20:2905–2913

    CAS  Google Scholar 

  • Axtell NR, Sternberg SP, Claussen K (2003) Lead and nickel removal using Microspora and Lemna minor. Bioresour Technol 89:41–48

    CAS  Google Scholar 

  • Barmpalexis P, Kachrimanis K, Georgarakis E (2011) Solid dispersions in the development of a nimodipine floating tablet formulation and optimization by artificial neural networks and genetic programming. Eur J Pharm Biopharm 77:122–131

    CAS  Google Scholar 

  • Barrer RM (1978) Zeolites and clay minerals as sorbents and molecular sieves. Academic Press, London, New York

    Google Scholar 

  • Barthomeuf D (1996) Basic zeolites: characterization and uses in adsorption and catalysis. Catal Rev 38:521–612

    Google Scholar 

  • Burges C (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2:121–167

    Google Scholar 

  • Canet L, Ilpide M, Seta P (2002) Efficient facilitated transport of lead, cadmium, zinc, and silver across a flat-sheet-supported liquid membrane mediated by lasalocid A. Sep Sci Technol 37:1851–1860

    CAS  Google Scholar 

  • Castillo O, Melin P, Kacprzyk J, Pedrycz W (2007) Type-2 fuzzy logic: theory and applications. In: IEEE international conference on granular computing (GRC 2007). IEEE, pp 145–145

  • Castro GA, Echegarrúa MG, Pérez MA, Moreno-Tost R, Rodríguez-Castellón E, Jiménez-López A (2008) Adsorption properties of natural and Cu (II), Zn (II), Ag (I) exchanged Cuban mordenites. Microporous Mesoporous Mater 108:325–332

    Google Scholar 

  • Cecen A (2017) Calculation, utilization, and inference of spatial statistics in practical spatio-temporal data. Doctoral dissertation, Georgia Institute of Technology

  • Çelekli A, Bozkurt H, Geyik F (2013) Use of artificial neural networks and genetic algorithms for prediction of sorption of an azo-metal complex dye onto lentil straw. Bioresour Technol 129:396–401

    Google Scholar 

  • Cincotti A, Mameli A, Locci AM, Orrù R, Cao G (2006) Heavy metals uptake by Sardinian natural zeolites: experiment and modeling. Ind Eng Chem Res 45:1074–1084

    CAS  Google Scholar 

  • Dabiĉ P, Krstuloviĉ R, Rušiĉ D (2000) A new approach in mathematical modelling of cement hydration development. Cem Concr Res 30:1017–1021

    Google Scholar 

  • Daneshvar N, Khataee AR, Djafarzadeh N (2006) The use of artificial neural networks (ANN) for modeling of decolorization of textile dye solution containing CI Basic Yellow 28 by electrocoagulation process. J Hazard Mater 137:1788–1795

    CAS  Google Scholar 

  • Dashti A, Asghari M, Dehghani M, Rezakazemi M, Mohammadi AH, Bhatia SK (2018a) Molecular dynamics, grand canonical Monte Carlo and expert simulations and modeling of water–acetic acid pervaporation using polyvinyl alcohol/tetraethyl orthosilicates membrane. J Mol Liq 265:53–68

    CAS  Google Scholar 

  • Dashti A, Harami HR, Rezakazemi M, Shirazian S (2018b) Estimating CH4 and CO2 solubilities in ionic liquids using computational intelligence approaches. J Mol Liq 271:661–669

    CAS  Google Scholar 

  • Dashti A, Raji M, Azarafza A, Baghban A, Mohammadi AH, Asghari M (2018c) Rigorous prognostication and modeling of gas adsorption on activated carbon and Zeolite-5A. J Environ Manag 224:58–68

    CAS  Google Scholar 

  • Dashti A, Raji M, Razmi A, Rezaei N, Zendehboudi S, Asghari M (2019) Efficient hybrid modeling of CO2 absorption in aqueous solution of piperazine: applications to energy and environment. Chem Eng Res Des 144:405–417

    CAS  Google Scholar 

  • Dashti A, Jokar M, Amirkhani F, Mohammadi AH (2020) Quantitative structure property relationship schemes for estimation of autoignition temperatures of organic compounds. J Mol Liq 300:111797

    CAS  Google Scholar 

  • Dyer A (1988) An introduction to zeolite molecular sieves. Wiley, Chichester

    Google Scholar 

  • Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: MHS’95. Proceedings of the sixth international symposium on micro machine and human science. IEEE, pp 39–43

  • Eccles H (1995) Removal of heavy metals from effluent streams—Why select a biological process? Int Biodeterior Biodegrad 35:5–16

    CAS  Google Scholar 

  • El-Bayaa AA, Badawy NA, AlKhalik E (2009) Effect of ionic strength on the adsorption of copper and chromium ions by vermiculite pure clay mineral. J Hazard Mater 170:1204–1209

    CAS  Google Scholar 

  • Englert AH, Rubio J (2005) Characterization and environmental application of a Chilean natural zeolite. Int J Miner Process 75:21–29

    CAS  Google Scholar 

  • Esalah JO, Weber ME, Vera JH (2000) Removal of lead, cadmium and zinc from aqueous solutions by precipitation with sodium Di-(n-octyl) phosphinate. Can J Chem Eng 78:948–954

    CAS  Google Scholar 

  • Eslamimanesh A, Gharagheizi F, Illbeigi M, Mohammadi AH, Fazlali A, Richon D (2012) Phase equilibrium modeling of clathrate hydrates of methane, carbon dioxide, nitrogen, and hydrogen + water soluble organic promoters using Support Vector Machine algorithm. Fluid Phase Equilib 316:34–45

    CAS  Google Scholar 

  • Esmaeili M, Osanloo M, Rashidinejad F, Bazzazi AA, Taji M (2014) Multiple regression, ANN and ANFIS models for prediction of backbreak in the open pit blasting. Eng Comput 30:549–558

    Google Scholar 

  • Fagundes-Klen MR, Ferri P, Martins TD, Tavares CR, Silva EA (2007) Equilibrium study of the binary mixture of cadmium–zinc ions biosorption by the Sargassum filipendula species using adsorption isotherms models and neural network. Biochem Eng J 34:136–146

    CAS  Google Scholar 

  • Garba Y, Taha S, Cabon J, Dorange G (2003) Modeling of cadmium salts rejection through a nanofiltration membrane: relationships between solute concentration and transport parameters. J Membr Sci 211:51–58

    CAS  Google Scholar 

  • Giri A, Patel RK, Mahapatra SS (2011) Artificial neural network (ANN) approach for modelling of arsenic (III) biosorption from aqueous solution by living cells of Bacillus cereus biomass. Chem Eng J 178:15–25

    CAS  Google Scholar 

  • Grosman B, Lewin DR (2002) Automated nonlinear model predictive control using genetic programming. Comput Chem Eng 26:631–640

    CAS  Google Scholar 

  • Guo Z, Bai G (2009) Application of least squares support vector machine for regression to reliability analysis. Chin J Aeronaut 22:160–166

    Google Scholar 

  • Guo X, Zhang S, Shan XQ (2008) Adsorption of metal ions on lignin. J Hazard Mater 151:134–142

    CAS  Google Scholar 

  • Haykin S, Network N (2004) A comprehensive foundation. Neural Netw 2:41

    Google Scholar 

  • Hemmati-Sarapardeh A, Shokrollahi A, Tatar A, Gharagheizi F, Mohammadi AH, Naseri A (2014) Reservoir oil viscosity determination using a rigorous approach. Fuel 116:39–48

    CAS  Google Scholar 

  • Hosseinzadeh M, Hemmati-Sarapardeh A (2014) Toward a predictive model for estimating viscosity of ternary mixtures containing ionic liquids. J Mol Liq 200:340–348

    CAS  Google Scholar 

  • Huang YH, Hsueh CL, Cheng HP, Su LC, Chen CY (2007) Thermodynamics and kinetics of adsorption of Cu (II) onto waste iron oxide. J Hazard Mater 144:406–411

    CAS  Google Scholar 

  • Hui KS, Chao CYH, Kot SC (2005) Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash. J Hazard Mater 127:89–101

    CAS  Google Scholar 

  • Ijagbemi CO, Baek MH, Kim DS (2009) Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions. J Hazard Mater 166:538–546

    CAS  Google Scholar 

  • Iphar M (2012) ANN and ANFIS performance prediction models for hydraulic impact hammers. Tunn Undergr Space Technol 27:23–29

    Google Scholar 

  • Jang JSR (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23:665–685

    Google Scholar 

  • Keskinkan O, Goksu M, Basibuyuk M, Forster C (2004) Heavy metal adsorption properties of a submerged aquatic plant (Ceratophyllum demersum). Bioresour Technol 92:197–200

    CAS  Google Scholar 

  • Khazali O, Abu-El-Halawa R, Al-Sou’od K (2007) Removal of copper (II) from aqueous solution by Jordanian pottery materials. J Hazard Mater 139:67–71

    CAS  Google Scholar 

  • Kinniburgh DG (1986) General purpose adsorption isotherms. Environ Sci Technol 20:895–904

    CAS  Google Scholar 

  • Kojima H, Lee YK (2001) Photosynthetic microorganisms in environmental biotechnology. Springer, Berlin

    Google Scholar 

  • Koopal LK, Van Riemsdijk WH, De Wit J, Benedetti MF (1994) Analytical isotherm equations for multicomponent adsorption to heterogeneous surfaces. J Colloid Interface Sci 166:51–60

    CAS  Google Scholar 

  • Koza JR (1994) Genetic programming as a means for programming computers by natural selection. Stat Comput 4:87–112

    Google Scholar 

  • Koza JR, Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection, vol 1. MIT Press, Cambridge

    Google Scholar 

  • Kumar KV, Porkodi K (2009) Modelling the solid–liquid adsorption processes using artificial neural networks trained by pseudo second order kinetics. Chem Eng J 148:20–25

    CAS  Google Scholar 

  • Lashkarbolooki M, Vaferi B, Rahimpour M (2011) Comparison the capability of artificial neural network (ANN) and EOS for prediction of solid solubilities in supercritical carbon dioxide. Fluid Phase Equilib 308:35–43

    CAS  Google Scholar 

  • Lee KH (2004) First course on fuzzy theory and applications, vol 27. Springer, Berlin

    Google Scholar 

  • Li Q, Wu S, Liu G, Liao X, Deng X, Sun D, Huang Y (2004) Simultaneous biosorption of cadmium (II) and lead (II) ions by pretreated biomass of Phanerochaete chrysosporium. Sep Purif Technol 34:135–142

    Google Scholar 

  • Marquez GE, Ribeiro MJP, Ventura JM, Labrincha JA (2004) Removal of nickel from aqueous solutions by clay-based beds. Ceram Int 30:111–119

    CAS  Google Scholar 

  • Nassar NN (2012) Kinetics, equilibrium and thermodynamic studies on the adsorptive removal of nickel, cadmium and cobalt from wastewater by superparamagnetic iron oxide nanoadsorbents. Can J Chem Eng 90:1231–1238

    CAS  Google Scholar 

  • Oliveira EA, Montanher SF, Andrade AD, Nobrega JA, Rollemberg MC (2005) Equilibrium studies for the sorption of chromium and nickel from aqueous solutions using raw rice bran. Process Biochem 40:3485–3490

    CAS  Google Scholar 

  • Pagnanelli F, Esposito A, Vegliò F (2002) Multi-metallic modelling for biosorption of binary systems. Water Res 36:4095–4105

    CAS  Google Scholar 

  • Panigrahi BK, Shi Y, Lim MH (2011) Handbook of swarm intelligence: concepts, principles and applications, vol 8. Springer, Berlin

    Google Scholar 

  • Pelckmans K, Suykens JA, Van Gestel T, De Brabanter J, Lukas L, Hamers B, Vandewalle J (2002) LS-SVMlab: a matlab/c toolbox for least squares support vector machines. Tutorial KULeuven-ESAT. https://www.esat.kuleuven.be/sista/lssvmlab/old/lssvmlab_paper0.pdf

  • Perić J, Trgo M, Medvidović NV (2004) Removal of zinc, copper and lead by natural zeolite—a comparison of adsorption isotherms. Water Res 38:1893–1899

    Google Scholar 

  • Qdais HA, Moussa H (2004) Removal of heavy metals from wastewater by membrane processes: a comparative study. Desalin 164:105–110

    CAS  Google Scholar 

  • Ragnarsdóttir KV (1993) Dissolution kinetics of heulandite at pH 2–12 and 25 C. Geochim Cosmochim Acta 57:2439–2449

    Google Scholar 

  • Reynel-Avila H, Mendoza-Castillo D, Hernández-Montoya V, Bonilla-Petriciolet A, Antizar-Ladislao B, Sheikholeslami R (2011) Multicomponent removal of heavy metals from aqueous solution using low-cost sorbents. Water production and wastewater treatment. Nova Science Publishers, New York

    Google Scholar 

  • Reynel-Avila HE, Bonilla-Petriciolet A, de la Rosa G, Treatment W (2015) Analysis and modeling of multicomponent sorption of heavy metals on chicken feathers using Taguchi’s experimental designs and artificial neural networks. Desalin Water Treat 55:1885–1899

    CAS  Google Scholar 

  • Rezakazemi M, Dashti A, Asghari M, Shirazian S (2017) H2-selective mixed matrix membranes modeling using ANFIS, PSO-ANFIS, GA-ANFIS. Int J Hydrogen Energy 42:15211–15225

    CAS  Google Scholar 

  • Safari H, Nekoeian S, Shirdel MR, Ahmadi H, Bahadori A, Zendehboudi S (2014) Assessing the dynamic viscosity of Na–K–Ca–Cl–H2O aqueous solutions at high-pressure and high-temperature conditions. Ind Eng Chem Res 53:11488–11500

    CAS  Google Scholar 

  • Schölkopf B, Smola AJ, Bach F (2002) Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT press, Cambridge

    Google Scholar 

  • Šćiban M, Klašnja M, Škrbić B (2008) Adsorption of copper ions from water by modified agricultural by-products. Desalin 229:170–180

    Google Scholar 

  • Sette S, Boullart L (2001) Genetic programming: principles and applications. Eng Appl Artif Intell 14:727–736

    Google Scholar 

  • Sharma A, Onwubolu G (2009) Hybrid particle swarm optimization and GMDH system. In: Onwubolu G (ed) Hybrid self-organizing modeling systems. Springer, Berlin, pp 193–231

    Google Scholar 

  • Shi Y, Eberhart R (1998) A modified particle swarm optimizer. In: 1998 IEEE international conference on evolutionary computation proceedings. IEEE world congress on computational intelligence (Cat. No. 98TH8360). IEEE, pp 69–73

  • Singh KP, Gupta S, Kumar A, Shukla SP (2012) Linear and nonlinear modeling approaches for urban air quality prediction. Sci Total Environ 426:244–255

    CAS  Google Scholar 

  • Sud D, Mahajan G, Kaur MP (2008) Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions—a review. Bioresour Technol 99:6017–6027

    CAS  Google Scholar 

  • Suykens JA, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9:293–300

    Google Scholar 

  • Tovar-Gómez R, Moreno-Virgen M, Dena-Aguilar J, Hernández-Montoya V, Bonilla-Petriciolet A, Montes-Morán MA (2013) Modeling of fixed-bed adsorption of fluoride on bone char using a hybrid neural network approach. Chem Eng J 228:1098–1109

    Google Scholar 

  • Trgo M, Perić J (2003) Interaction of the zeolitic tuff with Zn-containing simulated pollutant solutions. J Colloid Interface Sci 260:166–175

    CAS  Google Scholar 

  • Turan NG, Mesci B, Ozgonenel O (2011) The use of artificial neural networks (ANN) for modeling of adsorption of Cu (II) from industrial leachate by pumice. Chem Eng J 171:1091–1097

    CAS  Google Scholar 

  • Vapnik V (1995) The nature of statistical learning theory. Springer, New York

    Google Scholar 

  • Vapnik V (2013) The nature of statistical learning theory. Springer, Berlin

    Google Scholar 

  • Volesky B (2003) Biosorption process simulation tools. Hydrometallurgy 71:179–190

    CAS  Google Scholar 

  • Xavier-de-Souza S, Suykens JA, Vandewalle J, Bollé D (2009) Coupled simulated annealing. IEEE Trans Syst Man Cybern Part B (Cybern) 40:320–335

    Google Scholar 

  • Yan G, Viraraghavan T (2003) Heavy-metal removal from aqueous solution by fungus Mucor rouxii. Water Res 37:4486–4496

    CAS  Google Scholar 

  • Yang Y, Soh CK (2002) Automated optimum design of structures using genetic programming. Comput Struct 80:1537–1546

    Google Scholar 

  • Yetilmezsoy K, Demirel SJJ (2008) Artificial neural network (ANN) approach for modeling of Pb(II) adsorption from aqueous solution by Antep pistachio (Pistacia Vera L.) shells. J Hazard Mater 153:1288–1300

    CAS  Google Scholar 

  • Yu B, Zhang Y, Shukla A, Shukla SS, Dorris KL (2000) The removal of heavy metal from aqueous solutions by sawdust adsorption—removal of copper. J Hazard Mater 80:33–42

    CAS  Google Scholar 

  • Yurdakul M, Gopalakrishnan K, Akdas H (2014) Prediction of specific cutting energy in natural stone cutting processes using the neuro-fuzzy methodology. Int J Rock Mech Min Sci 67:127–135

    Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf C ontrol 8:338–353

    Google Scholar 

  • Zaki NG, Khattab IA, El-Monem NM (2007) Removal of some heavy metals by CKD leachate. J Hazard Mater 147:21–27

    CAS  Google Scholar 

  • Zhang Y, Pan B (2014) Modeling batch and column phosphate removal by hydrated ferric oxide-based nanocomposite using response surface methodology and artificial neural network. Chem Eng J 249:111–120

    CAS  Google Scholar 

  • Zouboulis AI, Matis KA, Lanara BG, Loos-Neskovic C (1997) Removal of cadmium from dilute solutions by hydroxyapatite. II. Flotation studies. Sep Sci Technol 32:1755–1767

    CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Dashti.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Editorial responsibility: J. Aravind.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 10 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dashti, A., Amirkhani, F., Jokar, M. et al. Insights into the estimation of heavy metals ions sorption from aqueous environment onto natural zeolite. Int. J. Environ. Sci. Technol. 18, 1773–1784 (2021). https://doi.org/10.1007/s13762-020-02912-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-020-02912-9

Keywords

Navigation