Skip to main content
Log in

Prediction of lead (Pb) adsorption on attapulgite clay using the feasibility of data intelligence models

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This study investigates the performance of support vector machine (SVM), multivariate adaptive regression spline (MARS), and random forest (RF) models for predicting the lead (Pb) adsorption by attapulgite clay. Models are constructed using batch stochastic data of heavy metal (HM) concentrations under different physicochemical conditions. Implementation of auto-hyper-parameter tuning using grid-search approach and comparative analysis is performed against the benchmark artificial intelligence (AI) models. Models are constructed based on Pb concentration (IC), the dosage of attapulgite clay (dose), contact time (CT), pH, and NaNO3 (SN). Principle component analysis (PCA) and correlation analysis (CA) methods are integrated to assess the importance of the applied predictors and their relationship with the target. Research findings approved the potential of the grid-RF model as a marginal superior predictive model against the grid-SVM in terms of MAE, i.e., 3.29 and 3.34, respectively; moreover, the md scored the same, i.e., 0.93, which reveals the potential predictability for both. Nonetheless, grid-MARS and standalone MARS models remained likewise in their predictability. IC parameter demonstrated the highest influential among all the predictors with the highest value of importance in the case of all three evaluators. The solution pH and dose stands together with marginal differences in case of PCA method; however, solution pH and CT appeared with similarity impact using the PCA method.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data were obtained from the published research over the literature and can be provided upon request from the corresponding author.

References

  • Abdi H, Williams LJ (2010) Principal component analysis. Wiley Interdiscip Rev: Computational Statistics 2:433–459. https://doi.org/10.1002/wics.101

    Article  Google Scholar 

  • Ahmadianfar I, Bozorg-Haddad O, Chu X (2020a) Gradient-based optimizer: a new metaheuristic optimization algorithm. Inf Sci 540:131–159

    Article  Google Scholar 

  • Ahmadianfar I, Jamei M, Chu X (2020b) A novel hybrid wavelet-locally weighted linear regression (W-LWLR) model for electrical conductivity (EC) prediction in water surface. J Contam Hydrol 232:103641

    Article  CAS  Google Scholar 

  • Akratos CS, Papaspyros JNE, Tsihrintzis VA (2009) Total nitrogen and ammonia removal prediction in horizontal subsurface flow constructed wetlands: use of artificial neural networks and development of a design equation. Bioresour Technol 100:586–596

    Article  CAS  Google Scholar 

  • Ali I, Aboul-Enein HY (2002) Speciation of arsenic and chromium metal ions by reversed phase high performance liquid chromatography. Chemosphere 48:275–278

    Article  CAS  Google Scholar 

  • Ali I, Aboul-Enein HY (2006) Instrumental methods in metal ion speciation. CRC Press

  • Ali I, Gupta VK (2006) Advances in water treatment by adsorption technology. Nat Protoc 1:2661–2667

    Article  CAS  Google Scholar 

  • Ali I, Jain CK (2004) Advances in arsenic speciation techniques. Int J Environ Anal Chem 84:947–964

    Article  CAS  Google Scholar 

  • Ali I, Aboul-Enein HY, Gupta VK (2009) Nanochromatography and nanocapillary electrophoresis: pharmaceutical and environmental analyses. John Wiley & Sons

  • Ali I, Gupta VK, Khan TA, Asim M (2012a) Removal of arsenate from aqueous solution by electro-coagulation method using Al-Fe electrodes. Int J Electrochem Sci 7:1898–1907

    CAS  Google Scholar 

  • Ali I, Khan TA, Asim M (2012b) Removal of arsenate from groundwater by electrocoagulation method. Environ Sci Pollut Res 19:1668–1676

    Article  CAS  Google Scholar 

  • Ali I, AL Othman ZA, Sanagi MM (2015) Green synthesis of iron nano-impregnated adsorbent for fast removal of fluoride from water. J Mol Liq 211:457–465

    Article  CAS  Google Scholar 

  • Ali I, Alharbi OML, Alothman ZA, Alwarthan A (2018) Facile and eco-friendly synthesis of functionalized iron nanoparticles for cyanazine removal in water. Colloids Surf B: Biointerfaces 171:606–613

    Article  CAS  Google Scholar 

  • Al-Musawi AA, Alwanas AAH, Salih SQ et al (2020) Shear strength of SFRCB without stirrups simulation: implementation of hybrid artificial intelligence model. Eng Comput 36:1–11. https://doi.org/10.1007/s00366-018-0681-8

    Article  Google Scholar 

  • Al-Sudani ZA, Salih SQ, Yaseen ZM (2019) Development of multivariate adaptive regression spline integrated with differential evolution model for streamflow simulation. J Hydrol 573:1–12

    Article  Google Scholar 

  • Amiri MJ, Abedi-Koupai J, Eslamian S et al (2013) Modelling Pb(II) adsorption based on synthetic and industrial wastewaters by ostrich bone char using artificial neural network and multivariate non-linear regression. Int J Hydrol Sci Technol 3:221–240. https://doi.org/10.1504/IJHST.2013.058313

    Article  Google Scholar 

  • Armstrong JS, Collopy F (1992) Error measures for generalizing about forecasting methods: empirical comparisons. Int J Forecast 8:69–80. https://doi.org/10.1016/0169-2070(92)90008-W

    Article  Google Scholar 

  • Aroua MK, Leong SPP, Teo LY, Yin CY, Daud WMAW (2008) Real-time determination of kinetics of adsorption of lead (II) onto palm shell-based activated carbon using ion selective electrode. Bioresour Technol 99:5786–5792

    Article  CAS  Google Scholar 

  • Basheer AA (2018) Chemical chiral pollution: impact on the society and science and need of the regulations in the 21st century. Chirality 30:402–406

    Article  CAS  Google Scholar 

  • Bazoobandi A, Emamgholizadeh S, Ghorbani H (2019) Estimating the amount of cadmium and lead in the polluted soil using artificial intelligence models. Eur J Environ Civ Eng 0:1–19. https://doi.org/10.1080/19648189.2019.1686429

    Article  Google Scholar 

  • Belgiu M, Drăguţ L (2016) Random forest in remote sensing: a review of applications and future directions. ISPRS J Photogramm Remote Sens 114:24–31

    Article  Google Scholar 

  • Bhagat SK, Tiyasha, Bekele DN (2018) Economical Approaches for the treatment and re utilization of laundry wastewater—a review. J Ind Pollut Control 34:2164–2178

    CAS  Google Scholar 

  • Bhagat SK, Tiyasha, Welde W et al (2019a) Evaluating physical and fiscal water leakage in water distribution system. Water (Switzerland) 11. https://doi.org/10.3390/w11102091

  • Bhagat SK, Tung TM, Yaseen ZM (2019b) Development of artificial intelligence for modeling wastewater heavy metal removal: state of the art, application assessment and possible future research. J Clean Prod 119473

  • Bhagat SK, Tiyasha T, Tung TM, Mostafa RR, Yaseen ZM (2020a) Manganese (Mn) removal prediction using extreme gradient model. Ecotoxicol Environ Saf 204:111059. https://doi.org/10.1016/j.ecoenv.2020.111059

    Article  CAS  Google Scholar 

  • Bhagat SK, Tung TM, Yaseen ZM (2020b) Heavy metal contamination prediction using ensemble model: case study of Bay sedimentation, Australia. J Hazard Mater 403:123492. https://doi.org/10.1016/j.jhazmat.2020.123492

    Article  CAS  Google Scholar 

  • Bhuyan MS, Bakar MA (2017) Seasonal variation of heavy metals in water and sediments in the Halda River, Chittagong, Bangladesh. Environ Sci Pollut Res 24:27587–27600. https://doi.org/10.1007/s11356-017-0204-y

    Article  CAS  Google Scholar 

  • Biau G, Scornet E (2016) A random forest guided tour. TEST 25:197–227. https://doi.org/10.1007/s11749-016-0481-7

    Article  Google Scholar 

  • Blázquez G, Martín-Lara MA, Tenorio G, Calero M (2011) Batch biosorption of lead (II) from aqueous solutions by olive tree pruning waste: equilibrium, kinetics and thermodynamic study. Chem Eng J 168:170–177

    Article  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45:5–32. https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  • Brokamp C, Jandarov R, Rao MB, LeMasters G, Ryan P (2017) Exposure assessment models for elemental components of particulate matter in an urban environment: a comparison of regression and random forest approaches. Atmos Environ 151:1–11. https://doi.org/10.1016/j.atmosenv.2016.11.066

    Article  CAS  Google Scholar 

  • Chen L-F, Liang H-W, Lu Y, Cui CH, Yu SH (2011) Synthesis of an attapulgite clay@ carbon nanocomposite adsorbent by a hydrothermal carbonization process and their application in the removal of toxic metal ions from water. Langmuir 27:8998–9004

    Article  CAS  Google Scholar 

  • Chen K, He J, Li Y, Cai X, Zhang K, Liu T, Hu Y, Lin D, Kong L, Liu J (2017) Removal of cadmium and lead ions from water by sulfonated magnetic nanoparticle adsorbents. J Colloid Interface Sci 494:307–316

    Article  CAS  Google Scholar 

  • Chen W, Li Y, Xue W, Shahabi H, Li S, Hong H, Wang X, Bian H, Zhang S, Pradhan B, Ahmad BB (2020) Modeling flood susceptibility using data-driven approaches of naïve bayes tree, alternating decision tree, and random forest methods. Sci Total Environ 701:134979

    Article  CAS  Google Scholar 

  • Chew CM, Aroua MK, Hussain MA (2017) A practical hybrid modelling approach for the prediction of potential fouling parameters in ultrafiltration membrane water treatment plant. J Ind Eng Chem 45:145–155

    Article  CAS  Google Scholar 

  • Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273–297. https://doi.org/10.1023/A:1022627411411

    Article  Google Scholar 

  • Crini G (2006) Non-conventional low-cost adsorbents for dye removal: a review. Bioresour Technol 97:1061–1085

    Article  CAS  Google Scholar 

  • Cutler DR, Edwards TC, Beard KH et al (2007) Random forests for classification in ecology. Ecology 88:2783–2792. https://doi.org/10.1890/07-0539.1

    Article  Google Scholar 

  • Dashamiri S, Ghaedi M, Asfaram A, Zare F, Wang S (2017) Multi-response optimization of ultrasound assisted competitive adsorption of dyes onto Cu (OH) 2-nanoparticle loaded activated carbon: central composite design. Ultrason Sonochem 34:343–353

    Article  CAS  Google Scholar 

  • de Santana FB, de Souza AM, Poppi RJ (2018) Visible and near infrared spectroscopy coupled to random forest to quantify some soil quality parameters. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 191:454–462. https://doi.org/10.1016/j.saa.2017.10.052

    Article  CAS  Google Scholar 

  • Deshmukh SC, Senthilnath J, Dixit RM, et al (2012) Comparison of radial basis function neural network and response surface methodology for predicting performance of biofilter treating toluene.

  • Dutta M, Basu JK (2013) Application of artificial neural network for prediction of Pb (II) adsorption characteristics. Environ Sci Pollut Res 20:3322–3330

    Article  CAS  Google Scholar 

  • Elkiran G, Nourani V, Abba SI (2019) Multi-step ahead modelling of river water quality parameters using ensemble artificial intelligence-based approach. J Hydrol 577:123962. https://doi.org/10.1016/j.jhydrol.2019.123962

    Article  CAS  Google Scholar 

  • Fan M, Hu J, Cao R, Ruan W, Wei X (2018) A review on experimental design for pollutants removal in water treatment with the aid of artificial intelligence. Chemosphere 200:330–343. https://doi.org/10.1016/j.chemosphere.2018.02.111

    Article  CAS  Google Scholar 

  • Feng Y, Gong J-L, Zeng G-M, Niu QY, Zhang HY, Niu CG, Deng JH, Yan M (2010) Adsorption of Cd (II) and Zn (II) from aqueous solutions using magnetic hydroxyapatite nanoparticles as adsorbents. Chem Eng J 162:487–494

    Article  CAS  Google Scholar 

  • Fiyadh SS, Alsaadi MA, AlOmar MK et al (2017) The modelling of lead removal from water by deep eutectic solvents functionalized CNTs: artificial neural network (ANN) approach. Water Sci Technol 76:2413–2426. https://doi.org/10.2166/wst.2017.393

    Article  CAS  Google Scholar 

  • Friedman JH (1991) Multivariate adaptive regression splines. Ann Stat 19:1–67. https://doi.org/10.1214/aos/1176347963

    Article  Google Scholar 

  • Friedman JH, Roosen CB (1995) An introduction to multivariate adaptive regression splines. Stat Methods Med Res 4:197–217. https://doi.org/10.1177/096228029500400303

    Article  CAS  Google Scholar 

  • García-Rosales G, Colín-Cruz A (2010) Biosorption of lead by maize (Zea mays) stalk sponge. J Environ Manag 91:2079–2086

    Article  Google Scholar 

  • Goel E, Abhilasha E, Goel E, Abhilasha E (2017) Random forest: a review.

  • Gomez-Gonzalez R, Cerino-Córdova FJ, Garcia-León AM, Soto-Regalado E, Davila-Guzman NE, Salazar-Rabago JJ (2016) Lead biosorption onto coffee grounds: comparative analysis of several optimization techniques using equilibrium adsorption models and ANN. J Taiwan Inst Chem Eng 68:201–210. https://doi.org/10.1016/j.jtice.2016.08.038

    Article  CAS  Google Scholar 

  • Gupta VK, Ali I (2004) Removal of lead and chromium from wastewater using bagasse fly ash—a sugar industry waste. J Colloid Interface Sci 271:321–328

    Article  CAS  Google Scholar 

  • Gupta VK, Ali I (2008) Removal of endosulfan and methoxychlor from water on carbon slurry. Environ Sci Technol 42:766–770

    Article  CAS  Google Scholar 

  • Gupta VK, Ali I (2012) Environmental water: advances in treatment, remediation and recycling. Newnes.

  • Gupta HV, Kling H, Yilmaz KK, Martinez GF (2009) Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modelling. J Hydrol 377:80–91. https://doi.org/10.1016/j.jhydrol.2009.08.003

    Article  Google Scholar 

  • Haghiabi AH, Nasrolahi AH, Parsaie A (2018) Water quality prediction using machine learning methods. Water Qual Res J Can 53:3–13. https://doi.org/10.2166/wqrj.2018.025

    Article  CAS  Google Scholar 

  • Isiyaka HA, Mustapha A, Juahir H, Phil-Eze P (2019) Water quality modelling using artificial neural network and multivariate statistical techniques. Model Earth Syst Environ 5:583–593. https://doi.org/10.1007/s40808-018-0551-9

    Article  Google Scholar 

  • James G, Witten D, Hastie T, Tibshirani R (2017) ISLR: Data for an introduction to statistical learning with applications in R.

  • Jiang M, Jin X, Lu X-Q, Chen Z (2010) Adsorption of Pb (II), Cd (II), Ni (II) and Cu (II) onto natural kaolinite clay. Desalination 252:33–39

    Article  CAS  Google Scholar 

  • Jollife IT, Cadima J (2016) Principal component analysis: a review and recent developments. Philos Trans R Soc A Math Phys Eng Sci 374(2065):20150202

    Article  Google Scholar 

  • Kardam A, Raj KR, Arora JK, Srivastava S (2012) Artificial neural network modeling for biosorption of Pb (II) ions on nanocellulose fibers. BioNanoScience 2:153–160. https://doi.org/10.1007/s12668-012-0045-6

    Article  Google Scholar 

  • Kassambara A, Mundt F (2020) factoextra: extract and visualize the results of multivariate data analyses.

  • Kennedy MJ, Gandomi AH, Miller CM (2015) Coagulation modeling using artificial neural networks to predict both turbidity and DOM-PARAFAC component removal. J Environ Chem Eng 3:2829–2838

    Article  CAS  Google Scholar 

  • Kisi O, Parmar KS (2016) Application of least square support vector machine and multivariate adaptive regression spline models in long term prediction of river water pollution. J Hydrol 534:104–112. https://doi.org/10.1016/j.jhydrol.2015.12.014

    Article  CAS  Google Scholar 

  • Kisi O, Choubin B, Deo RC, Yaseen ZM (2019) Incorporating synoptic-scale climate signals for streamflow modelling over the Mediterranean region using machine learning models.

  • Kragović M, Daković A, Sekulić Ž, Trgo M, Ugrina M, Perić J, Gatta GD (2012) Removal of lead from aqueous solutions by using the natural and Fe (III)-modified zeolite. Appl Surf Sci 258:3667–3673

    Article  Google Scholar 

  • Kulkarni P, Chellam S (2010) Disinfection by-product formation following chlorination of drinking water: artificial neural network models and changes in speciation with treatment. Sci Total Environ 408:4202–4210

    Article  CAS  Google Scholar 

  • Kundu P, Debsarkar A, Mukherjee S (2013) Artificial neural network modeling for biological removal of organic carbon and nitrogen from slaughterhouse wastewater in a sequencing batch reactor.

  • Li L, Rong S, Wang R, Yu S (2020) Recent advances in artificial intelligence and machine learning for nonlinear relationship analysis and process control in drinking water treatment: A review. Chem Eng J 405:126673

    Article  Google Scholar 

  • Liang X, Han J, Xu Y, Wang L, Sun Y, Tan X (2014) Sorption of Cd2+ on mercapto and amino functionalized palygorskite. Appl Surf Sci 322:194–201

    Article  CAS  Google Scholar 

  • Liaw A, Wiener M (2002) Classification and regression by randomForest.

  • Mandal S, Mahapatra SS, Patel RK (2015) Enhanced removal of Cr(VI) by cerium oxide polyaniline composite: optimization and modeling approach using response surface methodology and artificial neural networks. J Environ Chem Eng 3:870–885. https://doi.org/10.1016/j.jece.2015.03.028

    Article  CAS  Google Scholar 

  • Metzger A, Jacob-Rousseau N (2020) The 1857–1858 drought in Alsace: from water shortage to a socio-political extreme event. Reg Environ Chang 20:1–15

    Article  Google Scholar 

  • Meyer D, Dimitriadou E, Hornik K et al (2019) e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071). TU, Wien

    Google Scholar 

  • Mhamdi M, Elaloui E, Trabelsi-Ayadi M (2013) Adsorption of zinc by a Tunisian Smectite through a filtration membrane. Ind Crop Prod 47:204–211

    Article  CAS  Google Scholar 

  • Misra RK, Jain SK, Khatri PK (2011) Iminodiacetic acid functionalized cation exchange resin for adsorptive removal of Cr (VI), Cd (II), Ni (II) and Pb (II) from their aqueous solutions. J Hazard Mater 185:1508–1512

    Article  CAS  Google Scholar 

  • Momčilović M, Purenović M, Bojić A, Zarubica A, Ranđelović M (2011) Removal of lead (II) ions from aqueous solutions by adsorption onto pine cone activated carbon. Desalination 276:53–59

    Article  Google Scholar 

  • Montazer-Rahmati MM, Rabbani P, Abdolali A, Keshtkar AR (2011) Kinetics and equilibrium studies on biosorption of cadmium, lead, and nickel ions from aqueous solutions by intact and chemically modified brown algae. J Hazard Mater 185:401–407

    Article  CAS  Google Scholar 

  • Montgomery DC (2017) Design and analysis of experiments. John wiley & sons

  • Ozgur K, Yaseen ZM, Heddamb S (2019) The implementation of univariable scheme-based air temperature for solar radiation prediction: new development of dynamic evolving neural-fuzzy inference system model. Appl Energy 241:184–195

    Article  Google Scholar 

  • Parveen N, Zaidi S, Danish M (2016) Support vector regression model for predicting the sorption capacity of lead (II). Perspect Sci 8:629–631. https://doi.org/10.1016/j.pisc.2016.06.040

    Article  Google Scholar 

  • Penghui L, Ewees AA, Beyaztas BH, Qi C, Salih SQ, al-Ansari N, Bhagat SK, Yaseen ZM, Singh VP (2020) Metaheuristic optimization algorithms hybridized with artificial intelligence model for soil temperature prediction: novel model. IEEE Access 8:51884–51904

    Article  Google Scholar 

  • Pyrgaki K, Messini P, Zotiadis V (2018) Adsorption of pb and cu from aqueous solutions by raw and heat-treated attapulgite clay. Geosciences (Switzerland). https://doi.org/10.3390/geosciences8050157

  • Reynel-Avila HE, Bonilla-Petriciolet A, de la Rosa G (2014) Analysis and modeling of multicomponent sorption of heavy metals on chicken feathers using Taguchi’s experimental designs and artificial neural networks. Desalin Water Treat 55:1885–1899. https://doi.org/10.1080/19443994.2014.937762

    Article  CAS  Google Scholar 

  • Sanikhani H, Deo RC, Samui P, Kisi O, Mert C, Mirabbasi R, Gavili S, Yaseen ZM (2018) Survey of different data-intelligent modeling strategies for forecasting air temperature using geographic information as model predictors. Comput Electron Agric 152:242–260

    Article  Google Scholar 

  • Santin FM, da Silva RV, Grzybowski JMV (2016) Artificial neural network ensembles and the design of performance-oriented riparian buffer strips for the filtering of nitrogen in agricultural catchments. Ecol Eng 94:493–502

    Article  Google Scholar 

  • Sarica A, Cerasa A, Quattrone A (2017) Random forest algorithm for the classification of neuroimaging data in Alzheimer’s disease: a systematic review. Front Aging Neurosci 9:329

    Article  Google Scholar 

  • Sekulić Z, Antanasijević D, Stevanović S, Trivunac K (2019) The Prediction of heavy metal permeate flux in complexation-microfiltration process: polynomial neural network approach. Water Air Soil Pollut 230:23

    Article  Google Scholar 

  • Sharafati A, Haghbin M, Aldlemy MS, Mussa MH, al Zand AW, Ali M, Bhagat SK, al-Ansari N, Yaseen ZM (2020) Development of advanced computer aid model for shear strength of concrete slender beam prediction. Appl Sci (Switzerland). https://doi.org/10.3390/app10113811

  • Singh P, Kumar A (2020) Deciphering the function of unknown Leishmania donovani cytosolic proteins using hyperparameter-tuned random forest. Netw Model Anal Health Inform Bioinform 9:2. https://doi.org/10.1007/s13721-019-0208-2

    Article  Google Scholar 

  • Singha B, Bar N, Das SK (2015) The use of artificial neural network (ANN) for modeling of Pb(II) adsorption in batch process. J Mol Liq 211:228–232. https://doi.org/10.1016/j.molliq.2015.07.002

    Article  CAS  Google Scholar 

  • Song Y, Liu J, Chu N, Wu P, Wu D (2019) A novel demodulation method for rotating machinery based on time-frequency analysis and principal component analysis. J Sound Vib 442:645–656. https://doi.org/10.1016/j.jsv.2018.11.024

    Article  Google Scholar 

  • Su Q, Pan B, Pan B, Zhang Q, Zhang W, Lv L, Wang X, Wu J, Zhang Q (2009) Fabrication of polymer-supported nanosized hydrous manganese dioxide (HMO) for enhanced lead removal from waters. Sci Total Environ 407:5471–5477

    Article  CAS  Google Scholar 

  • Sugashini S, Begum KMMS, Ramalingam A (2015) Removal of Cr (VI) ions using Fe-loaded chitosan carbonized rice husk composite beads (Fe-CCRCB): experiment and quantum chemical calculations. J Mol Liq 208:380–387

    Article  CAS  Google Scholar 

  • Suykens JAK, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9:293–300. https://doi.org/10.1023/A:1018628609742

    Article  Google Scholar 

  • Tan K, Ma W, Wu F, Du Q (2019) Random forest–based estimation of heavy metal concentration in agricultural soils with hyperspectral sensor data. Environ Monit Assess. https://doi.org/10.1007/s10661-019-7510-4

  • Tao H, Sulaiman SO, Yaseen ZM, Asadi H, Meshram SG, Ghorbani MA (2018) What is the potential of integrating phase space reconstruction with SVM-FFA data-intelligence model? Application of Rainfall Forecasting over Regional Scale. Water Resour Manag 32:3935–3959. https://doi.org/10.1007/s11269-018-2028-z

    Article  Google Scholar 

  • Team RC (2013) R: A language and environment for statistical computing.

  • Tiyasha, Tung TM, Yaseen ZM (2020) A survey on river water quality modelling using artificial intelligence models: 2000–2020. J Hydrol 585:124670

    Article  CAS  Google Scholar 

  • Tsagkrasoulis D, Montana G (2018) Random forest regression for manifold-valued responses. Pattern Recogn Lett 101:6–13

    Article  Google Scholar 

  • Van der Bruggen B, Koninckx A, Vandecasteele C (2004) Separation of monovalent and divalent ions from aqueous solution by electrodialysis and nanofiltration. Water Res 38:1347–1353

    Article  Google Scholar 

  • Vapnik VN (2000) The nature of statistical learning theory, second. Springer New York, New York

    Book  Google Scholar 

  • Víctor-Ortega MD, Ochando-Pulido JM, Hodaifa G, Martínez-Ferez A (2014) Ion exchange as an efficient pretreatment system for reduction of membrane fouling in the purification of model OMW. Desalination 343:198–207

    Article  Google Scholar 

  • Wang X, Wang A (2010) Removal of Cd (II) from aqueous solution by a composite hydrogel based on attapulgite. Environ Technol 31:745–753

    Article  Google Scholar 

  • Wang J, Wu X, Zhang C (2005) Support vector machines based on K-means clustering for real-time business intelligence systems. Int J Bus Intell Data Min 1:54–64

    Google Scholar 

  • Wang W, Chen H, Wang A (2007) Adsorption characteristics of Cd (II) from aqueous solution onto activated palygorskite. Sep Purif Technol 55:157–164

    Article  CAS  Google Scholar 

  • Wang J, Liu G, Lu L, Zhang J, Liu H (2015a) Geochemical normalization and assessment of heavy metals (Cu, Pb, Zn, and Ni) in sediments from the Huaihe River, Anhui, China. Catena 129:30–38. https://doi.org/10.1016/j.catena.2015.02.008

    Article  CAS  Google Scholar 

  • Wang W, Tian G, Zhang Z, Wang A (2015b) A simple hydrothermal approach to modify palygorskite for high-efficient adsorption of methylene blue and Cu (II) ions. Chem Eng J 265:228–238

    Article  CAS  Google Scholar 

  • Wang Y, Shi L, Gao L, Wei Q, Cui L, Hu L, Yan L, du B (2015c) The removal of lead ions from aqueous solution by using magnetic hydroxypropyl chitosan/oxidized multiwalled carbon nanotubes composites. J Colloid Interface Sci 451:7–14

    Article  CAS  Google Scholar 

  • Wang H, Wang X, Ma J, Xia P, Zhao J (2017) Removal of cadmium (II) from aqueous solution: a comparative study of raw attapulgite clay and a reusable waste–struvite/attapulgite obtained from nutrient-rich wastewater. J Hazard Mater 329:66–76

    Article  CAS  Google Scholar 

  • Willmott CJ, Matsuura K (2005) Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim Res 30:79–82. https://doi.org/10.3354/cr030079

    Article  Google Scholar 

  • Wilson D, Del Valle M, Alegret S et al (2013) Simultaneous and automated monitoring of the multimetal biosorption processes by potentiometric sensor array and artificial neural network. Talanta 114:17–24. https://doi.org/10.1016/j.talanta.2013.03.066

    Article  CAS  Google Scholar 

  • Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemom Intell Lab Syst 2:37–52. https://doi.org/10.1016/0169-7439(87)80084-9

    Article  CAS  Google Scholar 

  • Yaseen ZM, Zigale TT, Kumar R et al (2019) Laundry wastewater treatment using a combination of sand filter, bio-char and teff straw media. Sci Rep 9:1–11

    Article  Google Scholar 

  • Zambrano-Bigiarini M (2020) hydroGOF: Goodness-of-fit functions for comparison of simulated and observed. Hydrol Time Series. https://doi.org/10.5281/zenodo.839854

  • Zeileis A, Grothendieck G (2005) zoo : S3 Infrastructure for regular and irregular time series. Journal of Statistical Software. doi: 10.18637/jss.v014.i06

  • Zhang D (2019) Fundamentals of image data mining. 35–44. https://doi.org/10.1007/978-3-030-17989-2

  • Zhang P, Chen RP, Wu HN (2019) Real-time analysis and regulation of EPB shield steering using Random Forest. Autom Constr 106:102860. https://doi.org/10.1016/j.autcon.2019.102860

    Article  Google Scholar 

  • Zhao Y, Li J, Zhao L, Zhang S, Huang Y, Wu X, Wang X (2014) Synthesis of amidoxime-functionalized Fe3O4@ SiO2 core–shell magnetic microspheres for highly efficient sorption of U (VI). Chem Eng J 235:275–283

    Article  CAS  Google Scholar 

  • Zhao D, Gao X, Wu C, Xie R, Feng S, Chen C (2016) Facile preparation of amino functionalized graphene oxide decorated with Fe3O4 nanoparticles for the adsorption of Cr (VI). Appl Surf Sci 384:1–9

    Article  CAS  Google Scholar 

  • Zhu X, Wang X, Ok YS (2019) The application of machine learning methods for prediction of metal sorption onto biochars. J Hazard Mater 378:120727

    Article  CAS  Google Scholar 

  • Zin PPK, Williams GJ, Ekins S (2020) Cheminformatics analysis and modeling with MacrolactoneDB. Sci Rep 10:6284. https://doi.org/10.1038/s41598-020-63192-4

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Konstantina Pyrgaki for providing the experimental dataset. Also, the authors appreciate the editors and reviewers for their constructive comments on enhancing the manuscript visualization.

Author information

Authors and Affiliations

Authors

Contributions

Suraj Kumar Bhagat: Data curation, formal analysis, methodology, investigation, visualization, writing - original draft, - review and editing draft preparation, resources, software. Mariapparaj Paramasivan: Visualization, writing - original draft, - review and editing draft preparation. Mustafa Al-Mukhtar: Formal analysis, project administration; writing - review and editing. Tiyasha Tiyasha: Data curation, formal analysis, methodology, investigation, visualization, writing - original draft, - review and editing draft preparation. Konstantina Pyrgaki: Writing - original draft, - review and editing draft preparation. Tran Minh Tung: Supervision, conceptualization, project administration, writing - review and editing. Zaher Mundher Yaseen: Supervision, conceptualization, project administration, writing - review and editing.

Corresponding author

Correspondence to Zaher Mundher Yaseen.

Ethics declarations

Ethics approval

The manuscript is conducted within the ethical manner advised by the Environmental Science and Pollution Research.

Consent to participate

Not applicable.

Consent for publication

The research is scientifically consented to be published.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Tito Roberto Cadaval Jr

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhagat, S.K., Paramasivan, M., Al-Mukhtar, M. et al. Prediction of lead (Pb) adsorption on attapulgite clay using the feasibility of data intelligence models. Environ Sci Pollut Res 28, 31670–31688 (2021). https://doi.org/10.1007/s11356-021-12836-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-12836-7

Keywords

Navigation