Skip to main content

Advertisement

Log in

Hydroponic root mats for wastewater treatment—a review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Hydroponic root mats (HRMs) are ecotechnological wastewater treatment systems where aquatic vegetation forms buoyant filters by their dense interwoven roots and rhizomes, sometimes supported by rafts or other floating materials. A preferential hydraulic flow is created in the water zone between the plant root mat and the bottom of the treatment system. When the mat touches the bottom of the water body, such systems can also function as HRM filter; i.e. the hydraulic flow passes directly through the root zone. HRMs have been used for the treatment of various types of polluted water, including domestic wastewater; agricultural effluents; and polluted river, lake, stormwater and groundwater and even acid mine drainage. This article provides an overview on the concept of applying floating HRM and non-floating HRM filters for wastewater treatment. Exemplary performance data are presented, and the advantages and disadvantages of this technology are discussed in comparison to those of ponds, free-floating plant and soil-based constructed wetlands. Finally, suggestions are provided on the preferred scope of application of HRMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adams P (1981) Nutrient-film culture. Agric Water Manage 4(4):471–478

    Article  Google Scholar 

  • Allison SD, Martiny JBH (2008) Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci U S A 105:11512–11519

    Article  CAS  Google Scholar 

  • Ayaz SC, Saygin O (1996) Hydroponic tertiary treatment. Water Res 30(5):1295–1298

    Article  CAS  Google Scholar 

  • Billore SK, Prashant, Sharma JK (2009) Treatment performance of artificial floating reed beds in an experimental mesocosm to improve the water quality of river Kshipra. Water Sci Technol 60(11):2851–2859

  • Bonilla-Warford CM, Zedler JB (2002) Potential for using native plant species in stormwater wetlands. Environ Manage 29(3):385–394

    Article  Google Scholar 

  • Boonsong K, Chansiri M (2008) Domestic wastewater treatment using vetiver grass cultivated with floating platform technique. AU J Technol 12(2):73–80

    Google Scholar 

  • Borne KE (2014) Floating treatment wetland influences on the fate and removal performance of phosphorus in stormwater retention ponds. Ecol Eng 69:76–82

    Article  Google Scholar 

  • Borne KE, Tanner CC, Fassman-Beck EA (2013) Stormwater nitrogen removal performance of a floating treatment wetland. Water Sci Technol 68(7):1657–1664

    Article  CAS  Google Scholar 

  • Borne KE, Fassman-Beck EA, Tanner CC (2014) Floating treatment wetland influences on the fate of metals in road runoff retention ponds. Water Res 48(1):430–442

    Article  CAS  Google Scholar 

  • Boutwell JE, Hutchings J, United States. Bureau of Reclamation (1999) Nutrient uptake research using vegetated floating platforms Las Vegas Wash Delta Lake Mead National Recreation Area, Lake Mead, Nevada. U.S. Dept. of the Interior, Bureau of Reclamation, Denver, Colo

  • Brix H (1993) Wastewater treatment in constructed wetlands: system design, removal processes, and treatment performance. In: Moshiri GA (ed) Constructed wetlands for water quality improvement. CRC Press, Boca Raton, pp 9–22

    Google Scholar 

  • Castillo-Castellanos D, Zavala-Leal I, Ruiz-Velazco JMJ, Radilla-García A, Nieto-Navarro JT, Romero-Bañuelos CA, González-Hernández J (2016) Implementation of an experimental nutrient film technique-type aquaponic system. Aquacult Int 24(2):637–646

  • Chang NB, Islam MK, Wanielista MP (2012) Floating wetland mesocosm assessment of nutrient removal to reduce ecotoxicity in stormwater ponds. Int J Environ Sci Tech 9(3):453–462

    Article  CAS  Google Scholar 

  • Chang NB, Xuan Z, Marimon Z, Islam K, Wanielista MP (2013) Exploring hydrobiogeochemical processes of floating treatment wetlands in a subtropical stormwater wet detention pond. Ecol Eng 54:66–76

    Article  Google Scholar 

  • Chen Z, Kuschk P, Reiche N, Borsdorf H, Kästner M, Köser H (2012) Comparative evaluation of pilot scale horizontal subsurface-flow constructed wetlands and plant root mats for treating groundwater contaminated with benzene and MTBE. J Hazard Mater 209–210:510–515

    Article  CAS  Google Scholar 

  • Chen Z, Kuschk P, Paschke H, Kästner M, Müller JA, Köser H (2014) Treatment of a sulfate-rich groundwater contaminated with perchloroethene in a hydroponic plant root mat filter and a horizontal subsurface flow constructed wetland at pilot-scale. Chemosphere 117:178–184

    Article  CAS  Google Scholar 

  • Chen Z, Kuschk P, Paschke H, Kästner M, Köser H (2015) The dynamics of low-chlorinated benzenes in a pilot-scale constructed wetland and a hydroponic plant root mat treating sulfate-rich groundwater. Environ Sci Pollut R 22(5):3886–3894

    Article  CAS  Google Scholar 

  • Cherry JA, Gough L (2006) Temporary floating island formation maintains wetland plant species richness: the role of the seed bank. Aquat Bot 85(1):29–36

    Article  Google Scholar 

  • Cooper AJ, Charlesworth RR (1977) Nutritional control of a nutrient-film tomato crop. Sci Hortic 7(3):189–195

    Article  CAS  Google Scholar 

  • Crites R, Tchobanoglous G (1998) Small and decentralized wastewater management systems. The McGraw-Hill Companies, Inc., Boston

    Google Scholar 

  • Cubillos J, Paredes D, Kuschk P (2011a) Comparison between floating plant mat and horizontal subsurface flow CW for the treatment of a low strength domestic wastewater. Joint Meeting of Society of Wetland Scientists, Wetpol and Wetland Biogeochemistry Symposium, 3 – 8 July 2011, Prague, p 64

    Google Scholar 

  • Cubillos J, Paredes D, Kuschk P (2011b) Comparison between floating plant mat and horizontal subsurface flow CW for the treatment of wastewater contaminated with petroleum hydrocarbons. Joint Meeting of Society of Wetland Scientists, Wetpol and Wetland Biogeochemistry Symposium, 3 – 8 July 2011, Prague, p 241

    Google Scholar 

  • Curt MD, Aguado PL, Fernandez J (2005) Nitrogen absorption by Sparganium erectum L. and Typha domingensis (Pers.) Steudel grown as floaters. International Meeting on Phytodegradation, Lorca

    Google Scholar 

  • Dahl H-J (1972) Untersuchung von Pflanzenarten auf ihre Eignung zum Bau schwimmender Pflanzeninseln. In: Technical University Hannover Vol. PhD thesis, Hannover

  • Deegan BM, White SD, Ganf GG (2007) The influence of water level fluctuations on the growth of four emergent macrophyte species. Aquat Bot 86(4):309–315

    Article  Google Scholar 

  • Dhote S, Dixit S (2009) Water quality improvement through macrophytes—a review. Environ Monit Assess 152(1):149–153

    Article  CAS  Google Scholar 

  • Farrar J, Hawes M, Jones D, Lindow S (2003) How roots control the flux of carbon to the rhizosphere. Ecology 84(4):827–837

    Article  Google Scholar 

  • Faulwetter JL, Gagnon V, Sundberg C, Chazarenc F, Burr MD, Brisson J, Camper AK, Stein OR (2009) Microbial processes influencing performance of treatment wetlands: a review. Ecol Eng 35(6):987–1004

    Article  Google Scholar 

  • Faulwetter JL, Burr MD, Cunningham AB, Stewart FM, Camper AK, Stein OR (2011) Floating treatment wetlands for domestic wastewater treatment. Water Sci Technol 64(10):2089–2095

    Article  CAS  Google Scholar 

  • Fonder N, Headley T (2013) The taxonomy of treatment wetlands: a proposed classification and nomenclature system. Ecol Eng 51:203–211

    Article  Google Scholar 

  • Fyson A, Kalin M, Smith MP (1995) Microbially-mediated metal removal from acid mine drainage. Proceedings of the Mining and Environment Conference, May 28-June 1. Sudbury, Ontario, pp 459–466

    Google Scholar 

  • Headley, T.R., Tanner, C.C. 2006. Application of floating wetlands for enhanced stormwater treatment: a review. Auckland Regional Council Technical publication TP324, 93p.

  • Headley TR, Tanner CC (2012) Constructed wetlands with floating emergent macrophytes: an innovative stormwater treatment technology. Crit Rev Env Sci Tec 42(21):2261–2310

    Article  CAS  Google Scholar 

  • Hijosa-Valsero M, Sidrach-Cardona R, Martín-Villacorta J, Bécares E (2010) Optimization of performance assessment and design characteristics in constructed wetlands for the removal of organic matter. Chemosphere 81(5):651–657

    Article  CAS  Google Scholar 

  • Hoeger S (1988) Schwimmkampen-Germany’s artificial floating islands. J Soil Water Conserv 43(4):304–306

    Google Scholar 

  • Hogg EH, Wein RW (1987) Growth dynamics of floating Typha mats: seasonal translocation and internal deposition of organic material. Oikos 50(2):197–205

    Article  Google Scholar 

  • Hogg EH, Wein RW (1988a) Seasonal change in gas content and buoyancy of floating Typha mats. J Ecol 76(4):1055–1068

    Article  CAS  Google Scholar 

  • Hogg EH, Wein RW (1988b) The contribution of Typha components to floating mat buoyancy. Ecology 69(4):1025–1031

    Article  Google Scholar 

  • Hu GJ, Zhou M, Hou HB, Zhu X, Zhang WH (2010) An ecological floating-bed made from dredged lake sludge for purification of eutrophic water. Ecol Eng 36(10):1448–1458

    Article  Google Scholar 

  • Hubbard RK (2010) Floating vegetated mats for improving surface water quality. In: Shah V (ed) Emerging environmental technologies. Springer, New York, pp 211–244

    Chapter  Google Scholar 

  • Hubbard RK, Gascho GJ, Newton GL (2004) Use of floating vegetation to remove nutrients from swine lagoon wastewater. Transactions of the ASAE 47(6):1963–1972

    Article  CAS  Google Scholar 

  • Ijaz A, Shabir G, Khan QM, Afzal M (2015) Enhanced remediation of sewage effluent by endophyte-assisted floating treatment wetlands. Ecol Eng 84:58–66

    Article  Google Scholar 

  • Jacobs AE, Harrison JA (2014) Effects of floating vegetation on denitrification, nitrogen retention, and greenhouse gas production in wetland microcosms. Biogeochemistry 119(1–3):51–66

    Article  CAS  Google Scholar 

  • Jenkins GA, Greenway M (2005) The hydraulic efficiency of fringing versus banded vegetation in constructed wetlands. Ecol Eng 25(1):61–72

    Article  Google Scholar 

  • Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163(3):459–480

    Article  CAS  Google Scholar 

  • Kadlec RH (2005) Wetland to pond treatment gradients. Water Sci Technol 51(9):291–298

    CAS  Google Scholar 

  • Kadlec RH, Knight RL (1996) Treatment wetlands. Lewis Publishers, Boca Raton

    Google Scholar 

  • Kadlec RH, Wallace S (2009) Treatment wetlands, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Kalin M, Smith MP (1992) The development of floating Typha mats. IAWPRC Conference on Wetland Systems in Water Pollution Control, Nov 30-Dec 3, 1992, Sydney, p 9

    Google Scholar 

  • Kerr-Upal M, Seasons M, Mulamoottil G (2000) Retrofitting a stormwater management facility with a wetland component. J Env Sci Health 35(8):1289–1307

    Article  Google Scholar 

  • Khan S, Afzal M, Iqbal S, Khan QM (2013a) Plant–bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere 90(4):1317–1332

    Article  CAS  Google Scholar 

  • Khan S, Melville BW, Shamseldin A (2013b) Design of storm-water retention ponds with floating treatment wetlands. J Environ Eng 139(11):1343–1349

    Article  CAS  Google Scholar 

  • Korner S, Vermaat JE, Veenstra S (2003) The capacity of duckweed to treat wastewater: ecological considerations for a sound design. J Environ Qual 32(5):1583–1590

    Article  Google Scholar 

  • Kyambadde J, Kansiime F, Dalhammar G (2005) Nitrogen and phosphorus removal in substrate-free pilot constructed wetlands with horizontal surface flow In Uganda. Water Air Soil Pollut 165(1):37–59

    Article  CAS  Google Scholar 

  • Ladislas S, Gérente C, Chazarenc F, Brisson J, Andrès Y (2015) Floating treatment wetlands for heavy metal removal in highway stormwater ponds. Ecol Eng 80:85–91

    Article  Google Scholar 

  • Lai WL, Wang SQ, Peng CL, Chen Z-H (2011) Root features related to plant growth and nutrient removal of 35 wetland plants. Water Res 45(13):3941–3950

    Article  CAS  Google Scholar 

  • Lai WL, Zhang Y, Chen ZH (2012) Radial oxygen loss, photosynthesis, and nutrient removal of 35 wetland plants. Ecol Eng 39:24–30

    Article  Google Scholar 

  • Lamers LPM, Govers LL, Janssen ICJM, Geurts JJM, Van der Welle MEW, Van Katwijk MM, Van der Heide T, Roelofs JGM, Smolders AJP (2013) Sulfide as a soil phytotoxin—a review. Front Plant Sci 4:268

    Article  CAS  Google Scholar 

  • Lennard W, Leonard B (2006) A comparison of three different hydroponic sub-systems (gravel bed, floating and nutrient film technique) in an aquaponic test system. Aquacult Int 14(6):539–550

    Article  Google Scholar 

  • Li M, Wu YJ, Yu ZL, Sheng GP, Yu HQ (2007) Nitrogen removal from eutrophic water by floating-bed-grown water spinach (Ipomoea aquatica Forsk.) with ion implantation. Water Res 41(14):3152–3158

    Article  CAS  Google Scholar 

  • Li M, Wu YJ, Yu ZL, Sheng GP, Yu HQ (2009a) Enhanced nitrogen and phosphorus removal from eutrophic lake water by Ipomoea aquatica with low-energy ion implantation. Water Res 43(5):1247–1256

    Article  CAS  Google Scholar 

  • Li XZ, Mander U, Ma ZG, Jia Y (2009b) Water quality problems and potential for wetlands as treatment systems in the Yangtze river delta, China. Wetlands 29(4):1125–1132

    Article  Google Scholar 

  • Li XN, Song HL, Li W, Lu XW, Nishimura O (2010) An integrated ecological floating-bed employing plant, freshwater clam and biofilm carrier for purification of eutrophic water. Ecol Eng 36(4):382–390

    Article  Google Scholar 

  • Li L, Yang Y, Tam NFY, Yang L, Mei X-Q, Yang F-J (2013) Growth characteristics of six wetland plants and their influences on domestic wastewater treatment efficiency. Ecol Eng 60:382–392

    Article  Google Scholar 

  • Lu H-L, Ku C-R, Chang Y-H (2015) Water quality improvement with artificial floating islands. Ecol Eng 74:371–375

    Article  Google Scholar 

  • Madras, J.J., Clarkson, W.W., DeLancey-Pompe, H., Kabrick, R.M. 1983. Wastewater treatment with plants in nutrient films, (Ed.) R.S.K.E.R.L. US Environmental Protection Agency.

  • Mei X-Q, Yang Y, Tam NF-Y, Wang Y-W, Li L (2014) Roles of root porosity, radial oxygen loss, Fe plaque formation on nutrient removal and tolerance of wetland plants to domestic wastewater. Water Res 50:147–159

    Article  CAS  Google Scholar 

  • Meng P, Pei H, Hu W, Shao Y, Li Z (2014) How to increase microbial degradation in constructed wetlands: influencing factors and improvement measures. Bioresour Technol 157:316–26

    Article  CAS  Google Scholar 

  • Mietto A, Borin M, Salvato M, Ronco P, Tadiello N (2013) Tech-IA floating system introduced in urban wastewater treatment plants in the Veneto region—Italy. Water Sci Technol 68(5):1144–1150

    Article  CAS  Google Scholar 

  • Miretzky P, Saralegui A, Fernández Cirelli A (2006) Simultaneous heavy metal removal mechanism by dead macrophytes. Chemosphere 62(2):247–254

    Article  CAS  Google Scholar 

  • Monnet F, Vaillant N, Hitmi A, Vernay P, Coudret A, Sallanon H (2002) Treatment of domestic wastewater using the nutrient film technique (NFT) to produce horticultural roses. Water Res 36(14):3489–96

    Article  CAS  Google Scholar 

  • Mueller G, Sartoris J, Nakamura K, Boutwell J (1996) Ukishima, floating islands or Schwimmkampen? Lakeline 16(3):18–19

    Google Scholar 

  • Munch C, Neu T, Kuschk P, Roske I (2007) The root surface as the definitive detail for microbial transformation processes in constructed wetlands—a biofilm characteristic. Water Sci Technol 56(3):271–6

    Article  CAS  Google Scholar 

  • Nahlik AM, Mitsch WJ (2006) Tropical treatment wetlands dominated by free-floating macrophytes for water quality improvement in Costa Rica. Ecol Eng 28(3):246–257

    Article  Google Scholar 

  • Nakamura, K., Shimatani, Y., Suzuki, O., Oguri, S., Yasumochi. 1995. The ecosystem of an artificial vegetated island, Ukishima, in Lake Kasumigaura. Proceedings 6th International Conference of Lakes Vol.1, Kasumigaura, Japan.

  • Nivala J, Knowles P, Dotro G, Garcia J, Wallace S (2012) Clogging in subsurface-flow treatment wetlands: measurement, modeling and management. Water Res 46(6):1625–40

    Article  CAS  Google Scholar 

  • Pavan F, Breschigliaro S, Borin M (2014) Screening of 18 species for digestate phytodepuration. Environ Sci Pollut R 22(4):2455–2466

    Article  CAS  Google Scholar 

  • Persson J (2000) The hydraulic performance of ponds of various layouts. Urban Water 2(3):243–250

    Article  Google Scholar 

  • Persson J, Somes NLG, Wong THF (1999) Hydraulics efficiency of constructed wetlands and ponds. Water Sci Technol 40(3):291–300

    Article  Google Scholar 

  • Plinius G. 77. Naturalis Historia. In: Bostock J, Riley HT (eds) The Natural History. Pliny the Elder, vol 2, Chapter 95. Taylor and Francis, London, 1855

  • Prashant, Billore SK, Sharma JK, Singh N, Ram H (2013) Treatment of wastewater and restoration of aquatic systems through an eco-technology based constructed treatment wetlands—a successful experience in Central India. Water Sci Technol 68(7):1566–1573.

  • Reinsel M (2014) Floating islands as a remediation tool. Pollut Eng 46(6):22–26

    Google Scholar 

  • Revitt DM, Shutes RBE, Llewellyn NR, Worrall P (1997) Experimental reedbed systems for the treatment of airport runoff. Water Sci Technol 36(8):385–390

    Article  CAS  Google Scholar 

  • Saeed T, Al-Muyeed A, Afrin R, Rahman H, Sun G (2014) Pollutant removal from municipal wastewater employing baffled subsurface flow and integrated surface flow-floating treatment wetlands. J Environ Sci 26(4):726–736

    Article  CAS  Google Scholar 

  • Schneider IAH, Rubio J (1999) Sorption of heavy metal ions by the nonliving biomass of freshwater macrophytes. Environ Sci Technol 33(13):2213–2217

    Article  CAS  Google Scholar 

  • Seeger EM, Reiche N, Kuschk P, Borsdorf H, Kaestner M (2011) Performance evaluation using a three compartment mass balance for the removal of volatile organic compounds in pilot scale constructed wetlands. Environ Sci Technol 45(19):8467–8474

    Article  CAS  Google Scholar 

  • Seeger EM, Maier U, Grathwohl P, Kuschk P, Kaestner M (2013) Performance evaluation of different horizontal subsurface flow wetland types by characterization of flow behavior, mass removal and depth-dependent contaminant load. Water Res 47(2):769–780

    Article  CAS  Google Scholar 

  • Shin CJ, Nam JM, Kim JG (2015) Floating mat as a habitat of Cicuta virosa, a vulnerable hydrophyte. Landscape Ecol Eng 11(1):111–117

  • Sims A, Zhang Y, Gajaraj S, Brown PB, Hu Z (2013) Toward the development of microbial indicators for wetland assessment. Water Res 47(5):1711–25

    Article  CAS  Google Scholar 

  • Smith MP, Kalin M (2000) Floating wetland vegetation covers for suspended solids removal. Treatment wetlands for water quality improvement. CH2MHILL, Quebec

    Google Scholar 

  • Song HL, Li XN, Lu XW, Inamori Y (2009) Investigation of microcystin removal from eutrophic surface water by aquatic vegetable bed. Ecol Eng 35(11):1589–1598

    Article  Google Scholar 

  • Sun L, Liu Y, Jin H (2009) Nitrogen removal from polluted river by enhanced floating bed grown canna. Ecol Eng 35(1):135–140

    Article  Google Scholar 

  • Swarzenski CM, Swenson EM, Sasser CE, Gosselink JG (1991) Marsh mat flotation in the Louisiana delta plain. J Ecol 79(4):999–1011

    Article  Google Scholar 

  • Tanaka Y, Tamaki H, Matsuzawa H, Nigaya M, Mori K, Kamagata Y (2012) Microbial community analysis in the roots of aquatic plants and isolation of novel microbes including an organism of the candidate phylum OP10. Microbes Environ 27(2):149–157

    Article  Google Scholar 

  • Tanner, C.C., Headley, T. 2008. Floating treatment wetlands— an innovative solution to enhance removal of fine particulates, copper and zinc. The NZWWA Journal, 26–30.

  • Tanner CC, Headley TR (2011) Components of floating emergent macrophyte treatment wetlands influencing removal of stormwater pollutants. Ecol Eng 37(3):474–486

    Article  Google Scholar 

  • Tanner CC, Champion PD, Kloosterman V (2006) New Zealand Constructed Wetland Planting Guidelines, National Institute of Water and Atmospheric Research report published in association with the New Zealand Water & Wastes Association. © NZWWA, Wellington

  • Todd J, Brown EJG, Wells E (2003) Ecological design applied. Ecol Eng 20(5):421–440

    Article  Google Scholar 

  • Tomassen HBM, Smolders AJP, van Herk JM, Lamers LPM, Roelofs JGM (2003) Restoration of cut-over bogs by floating raft formation: an experimental feasibility study. Appl Veg Sci 6(2):141–152

    Article  Google Scholar 

  • Vaillant N, Monnet F, Vernay P, Sallanon H, Coudret A, Hitmi A (2002) Urban wastewater treatment by a nutrient film technique system with a valuable commercial plant species (Chrysanthemum cinerariaefolium Trev.). Environ Sci Technol 36(9):2101–6

    Article  CAS  Google Scholar 

  • Vaillant N, Monnet F, Sallanon H, Coudret A, Hitmi A (2003) Treatment of domestic wastewater by an hydroponic NFT system. Chemosphere 50(1):121–9

    Article  CAS  Google Scholar 

  • Vainshtein M, Kuschk P, Mattusch J, Vatsourina A, Wiessner A (2003) Model experiments on the microbial removal of chromium from contaminated groundwater. Water Res 37(6):1401–1405

    Article  CAS  Google Scholar 

  • Van de Moortel A, Meers E, De Pauw N, Tack F (2010) Effects of vegetation, season and temperature on the removal of pollutants in experimental floating treatment wetlands. Water Air Soil Pollut 212(1):281–297

    Article  CAS  Google Scholar 

  • Van de Moortel AMK, Du Laing G, De Pauw N, Tack FMG (2011) Distribution and mobilization of pollutants in the sediment of a constructed floating wetland used for treatment of combined sewer overflow events. Water Environ Res 83(5):427–439

    Article  CAS  Google Scholar 

  • Van Duzer C (2004) Floating islands: a global bibliography. Cantor Press, California

    Google Scholar 

  • van Oostrom AJ (1995) Nitrogen removal in constructed wetlands treating nitrified meat processing effluent. Water Sci Technol 32(3):137–147

    Article  Google Scholar 

  • van Oostrom AJ, Russell JM (1994) Denitrification in constructed wastewater wetlands receiving high concentrations of nitrate. Water Sci Technol 29(4):7–14

    CAS  Google Scholar 

  • Vymazal J (2011) Constructed wetlands for wastewater treatment: five decades of experience. Environ Sci Technol 45(1):61–69

    Article  CAS  Google Scholar 

  • Wang CY, Sample DJ, Bell C (2014) Vegetation effects on floating treatment wetland nutrient removal and harvesting strategies in urban stormwater ponds. Sci Total Environ 499(1):384–393

    Article  CAS  Google Scholar 

  • Wang CY, Sample DJ, Day SD, Grizzard TJ (2015) Floating treatment wetland nutrient removal through vegetation harvest and observations from a field study. Ecol Eng 78:15–26

    Article  Google Scholar 

  • Wei B, Yu X, Zhang S, Gu L (2011) Comparison of the community structures of ammonia-oxidizing bacteria and archaea in rhizoplanes of floating aquatic macrophytes. Microbiol Res 166(6):468–474

    Article  CAS  Google Scholar 

  • Weragoda SK, Jinadasa KBSN, Zhang DQ, Gersberg RM, Tan SK, Tanaka N, Jern NW (2012) Tropical application of floating treatment wetlands. Wetlands 32(5):955–961

    Article  Google Scholar 

  • Wetzel RG (2001) Limnology: lake and river ecosystems, 3rd edn. Academic Press, London

    Google Scholar 

  • White SA, Cousins MM (2013) Floating treatment wetland aided remediation of nitrogen and phosphorus from simulated stormwater runoff. Ecol Eng 61:207–215

    Article  Google Scholar 

  • Winston RJ, Hunt WF, Kennedy SG, Merriman LS, Chandler J, Brown D (2013) Evaluation of floating treatment wetlands as retrofits to existing stormwater retention ponds. Ecol Eng 54:254–265

    Article  Google Scholar 

  • Wu QT, Gao T, Zeng S, Chua H (2006) Plant-biofilm oxidation ditch for in situ treatment of polluted waters. Ecol Eng 28(2):124–130

    Article  Google Scholar 

  • Xin ZJ, Li XZ, Nielsen S, Yan ZZ, Zhou YQ, Jia Y, Tang YY, Guo WY, Sun YG (2012) Effect of stubble heights and treatment duration time on the performance of water dropwort Floating Treatment Wetlands (FTWS). Ecol Chem Eng S 19(3):315–330

    Google Scholar 

  • Yang Z, Zheng S, Chen J, Sun M (2008) Purification of nitrate-rich agricultural runoff by a hydroponic system. Bioresour Technol 99(17):8049–8053

    Article  CAS  Google Scholar 

  • Yeh TY, Ke TY, Lin YL (2011) Algal growth control within natural water purification systems: macrophyte light shading effects. Water Air Soil Pollut 214(1–4):575–586

    Article  CAS  Google Scholar 

  • Yeh N, Yeh P, Chang Y-H (2015) Artificial floating islands for environmental improvement. Renew Sust Energy Rev 47:616–622

    Article  CAS  Google Scholar 

  • Zhang DQ, Jinadasa KBSN, Gersberg RM, Liu Y, Ng WJ, Tan SK (2014) Application of constructed wetlands for wastewater treatment in developing countries—a review of recent developments (2000–2013). J Environ Manage 141:116–131

    Article  CAS  Google Scholar 

  • Zhang J, Liu B, Zhou X, Chu J, Li Y, Wang M (2015) Effects of emergent aquatic plants on abundance and community structure of ammonia-oxidising microorganisms. Ecol Eng 81:504–513

    Article  Google Scholar 

  • Zhao F, Xi S, Yang X, Yang W, Li J, Gu B, He Z (2012) Purifying eutrophic river waters with integrated floating island systems. Ecol Eng 40:53–60

    Article  CAS  Google Scholar 

  • Zirschky J, Reed SC (1988) The use of duckweed for wastewater treatment. J Water Pollut Control Fed 60(7):1253–1258

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the International Science and Technology Cooperation Program from Hubei Province of China (Grant No. 2015BHE010) and the Fundamental Research Funds for the Central Universities (Grant No. 2662015QC004). It is also supported by the Helmholtz Centre for Environmental Research–UFZ within the scope of the SAFIRA II Research Programme (Revitalization of Contaminated Land and Groundwater at Megasites, subproject “Compartment Transfer(COTRA)”) and the European Commission (Grant Agreement FP7-KBBE-2012-6-311933) in the framework of the project “Integrating bio-treated wastewater reuse and valorization with enhanced water use efficiency to support the Green Economy in EU and India (Water4Crops).” We would like to thank Nancy Hachicho for drawing Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongbing Chen.

Additional information

Responsible editor: Philippe Garrigues

The late Peter Kuschk initiated this manuscript as corresponding author. The corresponding author responsibility was taken over by Zhongbing Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Cuervo, D.P., Müller, J.A. et al. Hydroponic root mats for wastewater treatment—a review. Environ Sci Pollut Res 23, 15911–15928 (2016). https://doi.org/10.1007/s11356-016-6801-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6801-3

Keywords

Navigation