Skip to main content
Log in

Selective solid-phase extraction using 1,5-diphenylcarbazide-modified magnetic nanoparticles for speciation of Cr(VI) and Cr(III) in aqueous solutions

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

In the present work, selective magnetic solid-phase extraction speciation of Cr(VI) and Cr(III) from aqueous solution with synthesized magnetic nanoparticles modified with 1,5-diphenylcarbazide (DPC). Cr(VI) could be separated from Cr(III) due to its complexation with 1,5-diphenylcarbazide. Fe3O4@SiO2@DPC with an average size of 22 nm has been characterized by X-ray diffraction, field emission scanning electron microscopy, and Fourier transform infrared spectroscopy. The optimized conditions for adsorption were established by adjusting the parameters affecting speciation of Cr(VI) and Cr(III), such as pH, sample volume, metal ion concentration, adsorbent dosage, and time. The modified magnetic nanoparticles preferably adsorbed Cr(VI) at pH = 2.5 and made it possible to speciate it from Cr(III). Four times recovery of magnetic solid phase was investigated by eluting Fe3O4@SiO2@DPC with different concentrations of HCl, HNO3 and H2SO4 and it was found that 10 mL of 1 M HNO3 was the best eluent. The obtained data fitted with Langmuir isotherm of adsorption which indicates that the adsorption of Cr(VI) onto Fe3O4@SiO2@DPC is a type of monolayer sorption. Finally, magnetic nanoparticles were evaluated for chromium electroplating wastewater where it showed a sufficient ability to work in a real media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Becker JS (2005) Trace and ultratrace analysis in liquids by atomic spectrometry TrAC. Trends Anal Chem 24:243–254

    Article  CAS  Google Scholar 

  • Beyki MH, Bayat M, Miri S, Shemirani F, Alijani H (2014) Synthesis, characterization, and silver adsorption property of magnetic cellulose xanthate from acidic solution: prepared by one step and biogenic approach. Ind Eng Chem Res 53:14904–14912

    Article  CAS  Google Scholar 

  • Brown RJ, Milton MJ (2005) Analytical techniques for trace element analysis: an overview TrAC. Trends Anal Chem 24:266–274

    Article  CAS  Google Scholar 

  • Bulut V, Duran C, Tufekci M, Elci L, Soylak M (2007) Speciation of Cr(III) and Cr(VI) after column solid phase extraction on Amberlite XAD-2010. J Hazard Mater 143:112–117

    Article  CAS  Google Scholar 

  • Cohen MD, Kargacin B, Klein CB, Costa M (1993) Mechanisms of chromium carcinogenicity and toxicity CRC. Crit Rev Toxicol 23:255–281

    Article  CAS  Google Scholar 

  • Cui C, He M, Chen B, Hu B (2014) Chitosan modified magnetic nanoparticles based solid phase extraction combined with ICP-OES for the speciation of Cr(III) and Cr(VI). Anal Methods 6:8577–8583

    Article  CAS  Google Scholar 

  • Dada A, Olalekan A, Olatunya A, Dada O (2012) Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms studies of equilibrium sorption of Zn2 + unto phosphoric acid modified rice husk. J Appl Chem 3:38–45

    Google Scholar 

  • Dai J, Ren F, Tao C (2012) Adsorption of Cr(VI) and speciation of Cr(VI) and Cr(III) in aqueous solutions using chemically modified chitosan Int J Env Res. Public Health 9:1757–1770

    CAS  Google Scholar 

  • Darwish M, Mohammadi A, Assi N (2016) Integration of nickel doping with loading on graphene for enhanced adsorptive and catalytic properties of CdS nanoparticles towards visible light degradation of some antibiotics. J Hazard Mater 320:304–314

    Article  CAS  Google Scholar 

  • Dayan A, Paine A (2001) Mechanisms of chromium toxicity, carcinogenicity and allergenicity: review of the literature from 1985 to 2000. Hum Exp Toxicol 20:439–451

    Article  CAS  Google Scholar 

  • Fan Z-J et al (2010) Facile synthesis of graphene nanosheets via Fe reduction of exfoliated graphite oxide. ACS Nano 5:191–198

    Article  CAS  Google Scholar 

  • Fan S et al (2017) Facile synthesis of tea waste/Fe 3 O 4 nanoparticle composite for hexavalent chromium removal from aqueous solution. RSC Adv 7:7576–7590

    Article  CAS  Google Scholar 

  • Gabriel K, Salifoglou A (2005) A chromium (iii)-citrate complex from aqueous solutions. J Agroaliment Process Technol 11:57–60

    Google Scholar 

  • Ghembaza H, Zerga A, Saïm R (2012) Effects of thickness and chemical quality of SiO2 barrier on POCl3 diffusion during the formation of emitter. Energy Procedia 18:733–740

    Article  CAS  Google Scholar 

  • Janssen L, Koene L (2002) The role of electrochemistry and electrochemical technology in environmental protection. Chem Eng J 85:137–146

    Article  CAS  Google Scholar 

  • Kadirvelu K, Faur-Brasquet C, Cloirec PL (2000) Removal of Cu (II), Pb(II), and Ni (II) by adsorption onto activated carbon cloths. Langmuir 16:8404–8409

    Article  CAS  Google Scholar 

  • Kara A, Demirbel E (2012) Kinetic, isotherm and thermodynamic analysis on adsorption of Cr(VI) ions from aqueous solutions by synthesis and characterization of magnetic-poly (divinylbenzene-vinylimidazole) microbeads. Water Air Soil Pollut 223:2387–2403

    Article  CAS  Google Scholar 

  • Li Y, Gao B, Wu T, Sun D, Li X, Wang B, Lu F (2009) Hexavalent chromium removal from aqueous solution by adsorption on aluminum magnesium mixed hydroxide. Water Res 43:3067–3075

    Article  CAS  Google Scholar 

  • Li L, Duan H, Wang X, Luo C (2014) Adsorption property of Cr (vi) on magnetic mesoporous titanium dioxide–graphene oxide core–shell microspheres. New J Chem 38:6008–6016

    Article  CAS  Google Scholar 

  • Ma W, Cai R, Lin Z (1998) Studies on adsorption properties of Chromium (VI) on the nanometer-size TiO2 powders surfaces using on-line flow-injection analysis. Chem J Chin Univ Chin 19:1566–1569

    CAS  Google Scholar 

  • Marczenko Z, Balcerzak M, Kloczko E (2000) Separation, preconcentration and spectrophotometry in inorganic analysis. Elsevier Science, New York

    Google Scholar 

  • Marques M, Salvador A, Morales-Rubio A, De la Guardia M (2000) Chromium speciation in liquid matrices: a survey of the literature. Fresenius J Anal Chem 367:601–613

    Article  CAS  Google Scholar 

  • Mattia GD et al (2004) Impairment of cell and plasma redox state in subjects professionally exposed to chromium. Am J Ind Med 46:120–125

    Article  CAS  Google Scholar 

  • Narin I, Kars A, Soylak M (2008) A novel solid phase extraction procedure on Amberlite XAD-1180 for speciation of Cr(III), Cr(VI) and total chromium in environmental and pharmaceutical samples. J Hazard Mater 150:453–458

    Article  CAS  Google Scholar 

  • Ozaki H, Sharma K, Saktaywin W (2002) Performance of an ultra-low-pressure reverse osmosis membrane (ULPROM) for separating heavy metal: effects of interference parameters. Desalination 144:287–294

    Article  CAS  Google Scholar 

  • Pyrzynska K (2010) Carbon nanostructures for separation, preconcentration and speciation of metal ions TrAC. Trends Anal Chem 29:718–727

    Article  CAS  Google Scholar 

  • Saadi R, Saadi Z, Fazaeli R, Fard NE (2015) Monolayer and multilayer adsorption isotherm models for sorption from aqueous media. Korean J Chem Eng 32:787–799. https://doi.org/10.1007/s11814-015-0053-7

    Article  CAS  Google Scholar 

  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:739–753

    Article  CAS  Google Scholar 

  • Simpson NJ (2000) Solid-phase extraction: principles, techniques, and applications. CRC Press, Boca Raton

    Book  Google Scholar 

  • Singh S, Barick K, Bahadur D (2011) Surface engineered magnetic nanoparticles for removal of toxic metal ions and bacterial pathogens. J Hazard Mater 192:1539–1547

    Article  CAS  Google Scholar 

  • Vilensky MY, Berkowitz B, Warshawsky A (2002) In situ remediation of groundwater contaminated by heavy-and transition-metal ions by selective ion-exchange methods. Environ Sci Technol 36:1851–1855

    Article  CAS  Google Scholar 

  • Wang J, Jia B, Guo L, Lin Q (2005) The determination of chromium in feeds by flame atomic absorption spectrophotometry. Guang pu xue yu guang pu fen xi = Guang pu 25:1142

  • Weckhuysen BM, Wachs IE, Schoonheydt RA (1996) Surface chemistry and spectroscopy of chromium in inorganic oxides. Chem Rev 96:3327–3350

    Article  CAS  Google Scholar 

  • WooáLee J, BináKim S (2011) Enhanced Cr(VI) removal using iron nanoparticle decorated graphene. Nanoscale 3:3583–3585

    Article  CAS  Google Scholar 

  • Xing Y, Chen X, Wang D (2007) Electrically regenerated ion exchange for removal and recovery of Cr(VI) from wastewater. Environ Sci Technol 41:1439–1443

    Article  CAS  Google Scholar 

  • Yao H, Ding Q, Zhou H, Zhao Z, Liu G, Wang G (2016) An adsorption–reduction synergistic effect of mesoporous Fe/SiO2–NH2 hollow spheres for the removal of Cr (vi) ions. RSC Adv 6:27039–27046

    Article  CAS  Google Scholar 

  • Zhai Y, Se Duan, He Q, Yang X, Han Q (2010) Solid phase extraction and preconcentration of trace mercury(II) from aqueous solution using magnetic nanoparticles doped with 1,5-diphenylcarbazide. Microchim Acta 169:353–360. https://doi.org/10.1007/s00604-010-0363-8

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors wish to thank Science and Research Branch, Islamic Azad University for the Instrumental support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Saber Tehrani.

Additional information

Editorial responsibility: Q. Aguilar-Virgen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assi, N., Aberoomand Azar, P., Saber Tehrani, M. et al. Selective solid-phase extraction using 1,5-diphenylcarbazide-modified magnetic nanoparticles for speciation of Cr(VI) and Cr(III) in aqueous solutions. Int. J. Environ. Sci. Technol. 16, 4739–4748 (2019). https://doi.org/10.1007/s13762-018-1868-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-018-1868-7

Keywords

Navigation