Skip to main content
Log in

Comparative Study of Nickel-Iron Composite with Fe3O4 Nanoparticles for the Adsorption of Chromium from Aqueous Medium

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Water contamination caused by hexavalent chromium [Cr(VI)] ions has attracted interest since Cr(VI) ions are highly poisonous and carcinogenic, posing major health risks. We report a simple and efficient approach for preparing Fe3O4 nanoparticles and Fe3O4/NiO composite using the chemical co-precipitation method for Cr(VI) removal. The produced magnetic adsorbents could be readily isolated from the solution using an external magnet and were used for Cr(VI) ion adsorption. The adsorbents were characterized by XRD, VSM, FT-IR, FE-SEM, EDX, and BET analyses. The Langmuir type 1 isotherm provided a good representation of the adsorption data when the Langmuir, Freundlich, Temkin, Harkins–Jura, Hasley, and Redlich-Peterson models were utilized to analyze the adsorption isotherm data. The adsorption capacities of Fe3O4 and Fe3O4/NiO composite calculated from the Langmuir type 1 model were 96.15 mg g−1 and 150 mg g−1, respectively. The saturation magnetization of Fe3O4 and Fe3O4/NiO composite was 60.54 emu/g and 11.09 emu/g, respectively. Both adsorbents may be easily and quickly separated from tainted water by an external magnetic field. According to the findings, both adsorbents are possibly reusable adsorbents for Cr(VI) adsorption. The main advantage of the material is that, due to its magnetic nature, it is easily separated from the adsorbate and may thus be used efficiently in sorption studies. As a result, this magnetic adsorbent provides a viable solution for the successful management of chromium-containing wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  • Abbas, A., & Hussain, M. A. (2016). Design, characterization and evaluation of. PLoS ONE, 11, 0151367.

    Google Scholar 

  • Abbas, A., Hussain, M. A., Amin, M., Sher, M., Tahir, M. N., & Tremel, W. (2015). Succinate-bonded pullulan: An efficient and reusable super-sorbent for cadmium-uptake from spiked high-hardness groundwater. Journal of Environmental Sciences, 37, 51.

    Article  CAS  Google Scholar 

  • Abdullah, N. H., Shameli, K., Abdullah, E. C., & Abdullah, L. C. (2019). Solid matrices for fabrication of magnetic iron oxide nanocomposites: Synthesis, properties, and application for the adsorption of heavy metal ions and dyes. Composites Part B: Engineering, 162, 538–568.

    Article  CAS  Google Scholar 

  • Abegunde, S. M., Idowu, K. S., Adejuwon, O. M., & Adeyemi-Adejolu, T. (2020). A review on the influence of chemical modification on the performance of adsorbents. Resources, Environment and Sustainability, 1, 100001.

    Article  Google Scholar 

  • Almomani, F., & Bhosale, R. R. (2021). Bio-sorption of toxic metals from industrial wastewater by algae strains Spirulina platensis and Chlorella vulgaris: Application of isotherm, kinetic models and process optimization. Science of the Total Environment, 755, 142654.

    Article  CAS  Google Scholar 

  • Arora, C., Soni, S., Sahu, S., Mittal, J., Kumar, P., & Bajpai, P. K. (2019). Iron based metal organic framework for efficient removal of methylene blue dye from industrial waste. Journal of Molecular Liquids, 284, 343.

    Article  CAS  Google Scholar 

  • Ashan, S. K., Ziaeifar, N., & Khalilnezhad, R. (2018). Artificial neural network modelling of Cr (VI) surface adsorption with NiO nanoparticles using the results obtained from optimization of response surface methodology. Neural Computing and Applications, 29, 969–979.

    Article  Google Scholar 

  • Azizkhani, S., Hussain, S. A., Abdullah, N., Ismail, M. H. S., & Mohammad, A. W. (2021). Synthesis and application of functionalized Graphene oxide-silica with chitosan for removal of Cd (II) from aqueous solution. Journal of Environmental Health Science and Engineering, 19, 491–502.

    Article  CAS  Google Scholar 

  • Bin-Dahman, O. A., & Saleh, T. A. (2024). Synthesis of polyamide grafted on bio support as polymeric adsorbents for the removal of dye and metal ions. Biomass Conversion and Biorefinery, 14, 2439–2452.

  • Buema, G., Lupu, N., Chiriac, H., Ciobanu, G., Bucur, R. D., Bucur, D., Favier, L., & Harja, M. (2021). Performance assessment of five adsorbents based on fly ash for removal of cadmium ions. Journal of Molecular Liquids, 333, 115932.

    Article  CAS  Google Scholar 

  • Chaki, S. H., Malek, T. J., Chaudhary, M. D., Tailor, J. P., & Deshpande, M. P. (2015). Magnetite Fe3O4 nanoparticles synthesis by wet chemical reduction and their characterization. Advances in Natural Sciences: Nanoscience and Nanotechnology, 6, 035009.

    Google Scholar 

  • Duan, J., Zhao, L., Lv, W., Li, Y., Zhang, Y., Ai, S., & Zhu, L. (2019). Facile synthesis of g-C3N4/Fe3O4 nanocomposites for fluorescent detection and removal of Cr (VI). Microchemical Journal, 150, 104105.

    Article  CAS  Google Scholar 

  • Eltaweil, A. S., El-Monaem, E. M. A., Mohy-Eldin, M. S., & Omer, A. M. (2021). Fabrication of attapulgite/magnetic aminated chitosan composite as efficient and reusable adsorbent for Cr (VI) ions. Scientific Reports, 11, 16598.

    Article  CAS  Google Scholar 

  • Esmaeili, H., & Tamjidi, S. (2020). Ultrasonic-assisted synthesis of natural clay/Fe3O4/graphene oxide for enhances removal of Cr (VI) from aqueous media. Environmental Science and Pollution Research, 27, 31652–31664.

    Article  CAS  Google Scholar 

  • Gayathri, R., Gopinath, K. P., & Kumar, P. S. (2021). Adsorptive separation of toxic metals from aquatic environment using agro waste biochar: Application in electroplating industrial wastewater. Chemosphere, 262, 128031.

    Article  CAS  Google Scholar 

  • Hassan, A. F., & Hrdina, R. (2022). Enhanced removal of arsenic from aqueous medium by modified silica nanospheres: Kinetic and thermodynamic studies. Arabian Journal for Science and Engineering, 47, 281–293.

  • Imran, M., Khan, Z. U. H., Iqbal, M. M., Iqbal, J., Shah, N. S., Munawar, S., Ali, S., Murtaza, B., Naeem, M. A., & Rizwan, M. (2020). Effect of biochar modified with magnetite nanoparticles and HNO3 for efficient removal of Cr (VI) from contaminated water: A batch and column scale study. Environmental Pollution, 261, 114231.

    Article  CAS  Google Scholar 

  • Kang, Z., Gao, H., Hu, Z., Jia, X., & Wen, D. (2022). Ni–Fe/reduced graphene oxide nanocomposites for hexavalent chromium reduction in an aqueous environment. ACS Omega, 7, 4041–4051.

    Article  CAS  Google Scholar 

  • Karamipour, A., Parsi, P. K., Zahedi, P., & Moosavian, S. M. A. (2020). Using Fe3O4-coated nanofibers based on cellulose acetate/chitosan for adsorption of Cr (VI), Ni (II) and phenol from aqueous solutions. International Journal of Biological Macromolecules, 154, 1132–1139.

    Article  CAS  Google Scholar 

  • Khan, Q., Zahoor, M., Salman, S. M., Wahab, M., Talha, M., Kamran, A. W., Khan, Y., Ullah, R., Ali, E. A., & Shah, A. B. (2022). The chemically modified leaves of Pteris vittata as efficient adsorbent for zinc (II) removal from aqueous solution. Water, 14, 4039.

    Article  CAS  Google Scholar 

  • Khare, N., Bajpai, J., & Bajpai, A. K. (2018). Graphene coated iron oxide (GCIO) nanoparticles as efficient adsorbent for removal of chromium ions: Preparation, characterization and batch adsorption studies. Environmental Nanotechnology, Monitoring & Management, 10, 148–162.

    Article  Google Scholar 

  • Kobielska, P. A., Howarth, A. J., Farha, O. K., & Nayak, S. (2018). Metal–organic frameworks for heavy metal removal from water. Coordination Chemistry Reviews, 358, 92.

    Article  CAS  Google Scholar 

  • Koohi, P., Rahbar-kelishami, A., & Shayesteh, H. (2021). Efficient removal of congo red dye using Fe3O4/NiO nanocomposite: Synthesis and characterization. Environmental Technology & Innovation, 23, 101559.

    Article  CAS  Google Scholar 

  • Li, S., Wen, N., Wei, D., & Zhang, Y. (2021). Highly effective removal of lead and cadmium ions from wastewater by bifunctional magnetic mesoporous silica. Separation and Purification Technology, 265, 118341.

    Article  CAS  Google Scholar 

  • Lodhi, B. A., Abbas, A., Hussain, M. A., Hussain, S. Z., Sher, M., & Hussain, I. (2019). Design, characterization and appraisal of chemically modified polysaccharide based mucilage from Ocimum basilicum (basil) seeds for the removal of Cd (II) from spiked high-hardness ground water. Journal of Molecular Liquids, 274, 15.

    Article  CAS  Google Scholar 

  • Mahdavi, S., & Amini, N. (2016). The role of bare and modified nano nickel oxide as efficient adsorbents for the removal of Cd2+, Cu2+, and Ni2+ from aqueous solution. Environmental Earth Sciences, 75, 1–15.

    Article  CAS  Google Scholar 

  • Mahmoudi, E., & Behnajady, M. A. (2018). Synthesis of Fe3O4@NiO core-shell nanocomposite by the precipitation method and investigation of Cr (VI) adsorption efficiency. Colloids and Surfaces a: Physicochemical and Engineering Aspects, 538, 287–296.

    Article  Google Scholar 

  • Manoj, S., RamyaPriya, R., & Elango, L. (2021). Long-term exposure to chromium contaminated waters and the associated human health risk in a highly contaminated industrialised region. Environmental Science and Pollution Research, 28, 4276.

    Article  CAS  Google Scholar 

  • Miao, J., Zhao, X., Zhang, Y. X., & Liu, Z. H. (2021). Feasible synthesis of hierarchical porous MgAl-borate LDHs functionalized Fe3O4@SiO2 magnetic microspheres with excellent adsorption performance toward congo red and Cr (VI) pollutants. Journal of Alloys and Compounds, 861, 157974.

    Article  CAS  Google Scholar 

  • Mohammadi, H., Nekobahr, E., Akhtari, J., Saeedi, M., Akbari, J., & Fathi, F. (2021). Synthesis and characterization of magnetite nanoparticles by co-precipitation method coated with biocompatible compounds and evaluation of in-vitro cytotoxicity. Toxicology Reports, 8, 331–336.

    Article  CAS  Google Scholar 

  • Munkaila, S., Bentley, J., Schimmel, K., Ahamad, T., Alshehri, S. M., & Bastakoti, B. P. (2021). Polymer directed synthesis of NiO nanoflowers to remove pollutant from wastewater. Journal of Molecular Liquids, 324, 114676.

    Article  CAS  Google Scholar 

  • Naik, R. L., Kumar, M. R., & Narsaiah, T. B. (2023). Removal of heavy metals (Cu & Ni) from wastewater using rice husk and orange peel as adsorbents. Materials Today: Proceedings, 72, 92–98.

    Google Scholar 

  • Neolaka, Y. A., Lawa, Y., Naat, J. N., Riwu, A. A., Iqbal, M., Darmokoesoemo, H., & Kusuma, H. S. (2020). The adsorption of Cr (VI) from water samples using graphene oxide-magnetic (GO-Fe3O4) synthesized from natural cellulose-based graphite (kusambi wood or Schleichera oleosa): Study of kinetics, isotherms and thermodynamics. Journal of Materials Research and Technology, 9, 6544–6556.

    Article  CAS  Google Scholar 

  • Nnadozie, E. C., & Ajibade, P. A. (2020). Adsorption, kinetic and mechanistic studies of Pb (II) and Cr (VI) ions using APTES functionalized magnetic biochar. Microporous and Mesoporous Materials, 309, 110573.

    Article  CAS  Google Scholar 

  • Nodehi, R., Shayesteh, H., & Rahbar-Kelishami, A. (2022). Fe3O4@NiO core–shell magnetic nanoparticle for highly efficient removal of Alizarin red S anionic dye. International Journal of Environmental Science and Technology, 19, 2899–2912.

    Article  CAS  Google Scholar 

  • Pavithra, S., Thandapani, G., Sugashini, S., Sudha, P. N., Alkhamis, H. H., Alrefaei, A. F., & Almutairi, M. H. (2021). Batch adsorption studies on surface tailored chitosan/orange peel hydrogel composite for the removal of Cr (VI) and Cu (II) ions from synthetic wastewater. Chemosphere, 271, 129415.

    Article  CAS  Google Scholar 

  • Pourmortazavi, S. M., Sahebi, H., Zandavar, H., & Mirsadeghi, S. (2019). Fabrication of Fe3O4 nanoparticles coated by extracted shrimp peels chitosan as sustainable adsorbents for removal of chromium contaminates from wastewater: The design of experiment. Composites Part B: Engineering, 175, 107130.

    Article  CAS  Google Scholar 

  • Raghav, S., & Kumar, D. (2018). Adsorption equilibrium, kinetics, and thermodynamic studies of fluoride adsorbed by tetrametallic oxide adsorbent. Journal of Chemical & Engineering Data, 63, 1682–1697.

    Article  CAS  Google Scholar 

  • Raghav, S., & Kumar, D. (2019). Fabrication of aluminium and iron impregnated pectin biopolymeric material for effective utilization of fluoride adsorption studies. Groundwater for Sustainable Development, 9, 100233.

    Article  Google Scholar 

  • Rahman, Z., & Singh, V. P. (2019). The relative impact of toxic heavy metals (THMs)(arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: An overview. EnvironmeNtal Monitoring and Assessment, 191, 1.

    Article  CAS  Google Scholar 

  • Sanchayanukun, P., & Muncharoen, S. (2019). Elimination of Cr (VI) in laboratory wastewater using chitosan coated magnetite nanoparticles (chitosan@Fe3O4). Environment Asia, 12(2), 32–48.

  • Santhosh, C., Daneshvar, E., Tripathi, K. M., Baltrėnas, P., Kim, T., Baltrėnaitė, E., & Bhatnagar, A. (2020). Synthesis and characterization of magnetic biochar adsorbents for the removal of Cr (VI) and Acid orange 7 dye from aqueous solution. Environmental Science and Pollution Research, 27, 32874–32887.

    Article  CAS  Google Scholar 

  • Saraswat, S. K., Demir, M., & Gosu, V. (2020). Adsorptive removal of heavy metals from industrial effluents using cow dung as the biosorbent: Kinetic and isotherm modeling. Environmental Quality Management, 30, 51–60.

    Article  Google Scholar 

  • Sharma, M., Singh, J., Hazra, S., & Basu, S. (2019). Adsorption of heavy metal ions by mesoporous ZnO and TiO2@ZnO monoliths: Adsorption and kinetic studies. Microchemical Journal, 145, 105–112.

    Article  CAS  Google Scholar 

  • Shekhawat, A., Kahu, S., Saravanan, D., Pandey, S., & Jugade, R. (2022). Rational modification of chitosan biopolymer for remediation of Cr (VI) from water. Journal of Hazardous Materials Advances, 7, 100123.

    Article  CAS  Google Scholar 

  • Shi, Y., Xing, Y., Deng, S., Zhao, B., Fu, Y., & Liu, Z. (2020). Synthesis of proanthocyanidins-functionalized Fe3O4 magnetic nanoparticles with high solubility for removal of heavy-metal ions. Chemical Physics Letters, 753, 137600.

    Article  CAS  Google Scholar 

  • Sirajudheen, P., Nikitha, M. R., Karthikeyan, P., & Meenakshi, S. (2020). Perceptive removal of toxic azo dyes from water using magnetic Fe3O4 reinforced graphene oxide–carboxymethyl cellulose recyclable composite: Adsorption investigation of parametric studies and their mechanisms. Surfaces and Interfaces, 21, 100648.

    Article  CAS  Google Scholar 

  • Song, J., Huang, Z., & El-Din, M. G. (2021). Adsorption of metals in oil sands process water by a biochar/iron oxide composite: Influence of the composite structure and surface functional groups. Chemical Engineering Journal, 421, 129937.

    Article  CAS  Google Scholar 

  • Soni, S., Bajpai, P. K., Mittal, J., & Arora, C. (2020a). Utilisation of cobalt doped Iron based MOF for enhanced removal and recovery of methylene blue dye from waste water. Journal of Molecular Liquids, 314, 113642.

    Article  CAS  Google Scholar 

  • Soni, S., Bajpai, P. K., Bharti, D., Mittal, J., & Arora, C. (2020b). Removal of crystal violet from aqueous solution using iron based metal organic framework. Desalination and Water Treatment, 205, 386.

    Article  CAS  Google Scholar 

  • Su, Q., Lin, Z., Tian, C., Su, X., Xue, X., & Su, Z. (2019). Improved removal of Cr (VI) using Fe3O4/C magnetic nanocomposites derived from potassium fulvic acid. Chemistry Select, 4, 13656–13662.

    CAS  Google Scholar 

  • Suo, L., Dong, X., Gao, X., Xu, J., Huang, Z., Ye, J., Lu, X., & Zhao, L. (2019). Silica-coated magnetic graphene oxide nanocomposite based magnetic solid phase extraction of trace amounts of heavy metals in water samples prior to determination by inductively coupled plasma mass spectrometry. Microchemical Journal, 149, 104039.

    Article  CAS  Google Scholar 

  • Tang, J., Zhao, B., Lyu, H., & Li, D. (2021). Development of a novel pyrite/biochar composite (BM-FeS2@BC) by ball milling for aqueous Cr (VI) removal and its mechanisms. Journal of Hazardous Materials, 413, 125415.

    Article  CAS  Google Scholar 

  • Teklay, A. (2016). Physiological effect of chromium exposure: A review. InterNational Journal of Food Sciences and Nutrients, 7, 1.

    Google Scholar 

  • Wang, X., Xu, J., Liu, J., Liu, J., Xia, F., Wang, C., Dahlgren, R. A., & Liu, W. (2020). Mechanism of Cr (VI) removal by magnetic greigite/biochar composites. Science of the Total Environment, 700, 134414.

    Article  CAS  Google Scholar 

  • Wang, B., Lan, J., Bo, C., Gong, B., & Ou, J. (2023). Adsorption of heavy metal onto biomass-derived activated carbon. RSC Advances, 13, 4275.

    Article  Google Scholar 

  • Weber, W. J., Jr., & Morris, J. C. (1963). Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division, 89, 31–59.

    Article  Google Scholar 

  • Wen, Z., Zhang, Y., Cheng, G., Wang, Y., & Chen, R. (2019). Simultaneous removal of As (V)/Cr (VI) and acid orange 7 (AO7) by nanosized ordered magnetic mesoporous Fe-Ce bimetal oxides: Behavior and mechanism. Chemosphere, 218, 1002–1013.

    Article  CAS  Google Scholar 

  • Yan, C. Z., Kim, M. G., Hwang, H. U., Nzioka, A. M., Sim, Y. J., & Kim, Y. J. (2020). Adsorption of heavy metals using activated carbon synthesized from the residues of medicinal herbs. Theoretical Foundations of Chemical Engineering, 54, 973.

    Article  CAS  Google Scholar 

  • Yang, Y., Li, J., Yan, T., Zhu, R., Yan, L., & Pei, Z. (2020). Adsorption and photocatalytic reduction of aqueous Cr (VI) by Fe3O4-ZnAl-layered double hydroxide/TiO2 composites. Journal of Colloid and Interface Science, 562, 493–501.

    Article  CAS  Google Scholar 

  • Yao, Y., Mi, N., He, C., Zhang, Y., Yin, L., Li, J., Wang, W., Yang, S., He, H., Li, S., & Ni, L. (2020). A novel colloid composited with polyacrylate and nano ferrous sulfide and its efficiency and mechanism of removal of Cr (VI) from Water. Journal of Hazardous Materials, 399, 123082.

    Article  CAS  Google Scholar 

  • Younas, F., Mustafa, A., Farooqi, Z. U. R., Wang, X., Younas, S., Mohy-Ud-Din, W., Ashir Hameed, M., Mohsin Abrar, M., Maitlo, A. A., Noreen, S., & Hussain, M. M. (2021). Current and emerging adsorbent technologies for wastewater treatment: Trends, limitations, and environmental implications. Water, 13, 215.

    Article  CAS  Google Scholar 

  • Yu, G., & Fu, F. (2020). Exploration of different adsorption performance and mechanisms of core-shell Fe3O4@Ce-Zr oxide composites for Cr (VI) and Sb (III). Journal of Colloid and Interface Science, 576, 10–20.

    Article  CAS  Google Scholar 

  • Zhao, M., Cui, Z., Pan, D., Fan, F., Tang, J., Hu, Y., Xu, Y., Zhang, P., Li, P., Kong, X. Y., & Wu, W. (2021). An efficient uranium adsorption magnetic platform based on amidoxime-functionalized flower-like Fe3O4@TiO2 core–shell microspheres. ACS Applied Materials & Interfaces, 13, 17931–17939.

    Article  CAS  Google Scholar 

  • Zou, H., Zhao, J., He, F., Zhong, Z., Huang, J., Zheng, Y., Zhang, Y., Yang, Y., Yu, F., Bashir, M. A., & Gao, B. (2021). Ball milling biochar iron oxide composites for the removal of chromium (Cr (VI)) from water: Performance and mechanisms. Journal of Hazardous Materials, 413, 125252.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the Department of Chemistry, Banasthali Vidyapith (India) for the moral support and providing necessary facilities in the overall experimental works.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Srivastava.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, A., Raghav, S., Srivastava, A. et al. Comparative Study of Nickel-Iron Composite with Fe3O4 Nanoparticles for the Adsorption of Chromium from Aqueous Medium. Water Air Soil Pollut 235, 232 (2024). https://doi.org/10.1007/s11270-024-07017-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-024-07017-4

Keywords

Navigation