Skip to main content
Log in

Adsorption of phenol from aqueous solution by four types of modified attapulgites

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

To study the adsorption of phenol by various modifications of attapulgite, four modifiers (hydrochloric acid, octadecyl trimethyl ammonium chloride, nitrilotriacetic acid and ethanediamine) were chosen and the phenol removal properties of the aqueous solution were explored. All modified attapulgite samples were characterized by SEM and FTIR, which revealed that the modified attapulgites had different surface structures and that the modifier groups successfully grafted onto the surface of the attapulgite. Effects of dosage, pH, the concentration of sodium ions and temperature on the adsorption capacity were evaluated. In this experiment, phenol removal was maximized at an adsorbent’s dosing concentration of 200 g L−1. The sorption kinetic data could be well represented by a pseudo-second-order model. The Langmuir equation agrees very well with the equilibrium isotherm. The findings herein suggest that octadecyl trimethyl ammonium chloride modified attapulgite may be a cost-effective and highly efficient material for phenol removal, with removal rates of more than 90% in aqueous solutions with low concentrations of sodium ions, at room temperature and a pH of 3. In conclusion, octadecyl trimethyl ammonium chloride modified attapulgite was superior to other forms of attapulgite as a phenol absorbent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Chen H, Zhao YG, Wang AQ (2007) Removal of Cu(II) from aqueous solution by adsorption onto acid-activated palygorskite. J Hazard Mater 149:346–354

    Article  CAS  Google Scholar 

  • Deng YH, Gao ZQ, Liu BZ et al (2013) Selective removal of lead from aqueous solutions by ethylenediamine-modified attapulgite. Chem Eng J 223:91–98

    Article  CAS  Google Scholar 

  • Dong R, Liu YF, Wang XG, Huang JH (2011) Adsorption of sulfate ions from aqueous solution by surfactant-modified palygorskite. J Chem Eng Data 56:3890–3896

    Article  CAS  Google Scholar 

  • Du WG, Liu XM, Tan LQ (2012) Effect of contact time, pH, humic acid and temperature on the sorption of radionuclide Am(III) onto attapulgite. J Radioanal Nucl Chem 292:1173–1179

    Article  CAS  Google Scholar 

  • Eren E, Gumus H (2011) Characterization of the structural properties and Pb(II) adsorption behavior of iron oxide coated sepiolite. Desalination 273:276–284

    Article  CAS  Google Scholar 

  • Falayi T, Ntuli F (2014) Removal of heavy metals and neutralisation of acid mine drainage with un-activated attapulgite. J Ind Eng Chem 20:1285–1292

    Article  CAS  Google Scholar 

  • Feng L, Xu WH, Liu TF, Liu J (2012) Heat regeneration of hydroxyapatite/attapulgite composite beads for defluoridation of drinking water. J Hazard Mater 221:228–235

    Article  CAS  Google Scholar 

  • Feng CH, Huang LQ, Yu H et al (2015) Simultaneous phenol removal, nitrification and denitrification using microbial fuel cell technology. Water Res 76:60–170

    Article  CAS  Google Scholar 

  • Fernandez E, Gotovac S, Hugi-Cleary D et al (2003) Phenol adsorption from dilute aqueous solutions by carbons. Chimia 57:616–618

    Article  CAS  Google Scholar 

  • Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465

    Article  CAS  Google Scholar 

  • Hori TSF, Avilez IM, Inoue LK, Moraes G (2006) Metabolical changes induced by chronic phenol exposure in matrinxa Brycon cephalus (teleostei: characidae) juveniles. Comp Biochem Physiol C Pharmacol Toxicol 143:67–72

    Article  CAS  Google Scholar 

  • Huang JH, Liu YF, Jin QZ (2007a) Adsorption studies of a water soluble dye, Reactive Red MF-3B, using sonication-surfactant-modified attapulgite clay. J Hazard Mater 143:541–548

    Article  CAS  Google Scholar 

  • Huang JH, Wang XG, Jin QZ (2007b) Removal of phenol from aqueous solution by adsorption onto OTMAC-modified attapulgite. J Environ Manag 84:229–236

    Article  CAS  Google Scholar 

  • Huang Y, Ma XY, Liang GZ, Yan HX (2008) Adsorption of phenol with modified rectorite from aqueous solution. Chem Eng J 141:1–8

    Article  CAS  Google Scholar 

  • Jiang JQ, Cooper C, Ouki S (2002) Comparison of modified montmorillonite adsorbents—part I: preparation, characterization and phenol adsorption. Chemosphere 47:711–716

    Article  CAS  Google Scholar 

  • Lagergren S (1898) Kungliga svenska vetenskapsakademiens. Handlingar 24:1

    Google Scholar 

  • Ljiljana D, Vesna R, Vladislav R, Dusan S, Aline A (2010) The investigation of phenol removal from aqueous solutions by zeolites as solid adsorbents. J Hazard Mater 184:477–484

    Article  CAS  Google Scholar 

  • Ma JF, Zhu LZ (2007) Removal of phenols from water accompanied with synthesis of organo-bentonite in one-step process. Chemosphere 68:1883–1888

    Article  CAS  Google Scholar 

  • Medel A, Bustos E, Esquivel K, Godinez LA, Meas Y (2012) Electrochemical incineration of phenolic compounds from the hydrocarbon industry using boron-doped diamond electrodes. Int J Photoenergy

  • Moreno-Pirajan JC, Giraldo L, Gonzalez JF (2011) Adsorption of phenol in aqueous solutions using activated carbon monoliths of Coco shell: adsorption isotherms and kinetics. Afinidad 68:290–295

    CAS  Google Scholar 

  • Murray HH (2000) Traditional and new applications for kaolin, smectite, and palygorskite: a general overview. Appl Clay Sci 17:207–221

    Article  CAS  Google Scholar 

  • Pitakteeratham N, Hafuka A, Satoh H, Watanabe Y (2013) High efficiency removal of phosphate from water by zirconium sulfate-surfactant micelle mesostructure immobilized on polymer matrix. Water Res 47:3583–3590

    Article  CAS  Google Scholar 

  • Qadeer R, Rehan AH (2002) A study of the adsorption of phenol by activated carbon from aqueous solutions. Turk J Chem 26:357–361

    CAS  Google Scholar 

  • Qin CH, Wang R, Ma W (2010) Adsorption kinetic studies of calcium ions onto Ca-selective zeolite. Desalination 259:156–160

    Article  CAS  Google Scholar 

  • Tai YF, Shi CJ, Wang CH (2014) Preparation and characterization of anion-cation organopalygorskite for 2-naphthol removal from aqueous solution. J Mol Liq 195:116–124

    Article  CAS  Google Scholar 

  • Tunc MS, Tepe O (2017) Removal of phenol from aqueous solution using persulfate activated with nanoscale zero-valent iron. Desalin Water Treat 74:269–277

    Article  CAS  Google Scholar 

  • Vala RMK, Tichagwa L, Dikio ED (2015) Evaluation of N-terminated siloxanes grafted onto lignocellulose as adsorbent for the removal of phenol red from water. Int J Environ Sci Technol 12:2723–2730

    Article  CAS  Google Scholar 

  • Wang XL, Shu L, Wang YQ, Xu BB, Bai YC, Tao S, Xing BS (2011) Sorption of peathumic acids to multi-walled carbon nanotubes. Environ Sci Technol 45:9276–9283

    Article  CAS  Google Scholar 

  • Wang P, Tang L, Wei X, Zeng GM, Zhou YY, Deng YC, Wang JJ, Xie ZH, Fang W (2017) Synthesis and application of iron and zinc doped biochar for removal of p-nitrophenol in wastewater and assessment of the influence of co-existed Pb(II). Appl Clay Sci 392:391–401

    CAS  Google Scholar 

  • Wei XP, Wu HH, Sun F (2017) Magnetite/Fe–Al-montmorillonite as a Fenton catalyst with efficient degradation of phenol. J Colloid Interface Sci 185:726–736

    Google Scholar 

  • Wu CD, Zhang JY, Wang L, He MH (2013) Removal of aniline and phenol from water using raw and aluminum hydroxide-modified diatomite. Water Sci Technol 67:1620–1626

    Article  CAS  Google Scholar 

  • Xin XD, Si W, Yao ZX et al (2011) Adsorption of benzoic acid from aqueous solution by three kinds of modified bentonites. J Colloid Interface Sci 359:499–504

    Article  CAS  Google Scholar 

  • Xue AL, Zhou SY, Zhao YJ (2011) Effective NH2-grafting on attapulgite surfaces for adsorption of reactive dyes. J Hazard Mater 194:7–14

    Article  CAS  Google Scholar 

  • Yang GD, Tang L, Zeng GM, Cai Y, Tang J, Pang Y, Zhou YY, Liu YY, Wang JJ, Zhang S, Xiong WP (2015) Simultaneous removal of lead and phenol contamination from water by nitrogen-functionalized magnetic ordered mesoporous carbon. Chem Eng J 259:854–864

    Article  CAS  Google Scholar 

  • Yi J, Rengaraj S, Kim Y et al (2004) Batch adsorptive removal of copper ions in aqueous solutions by ion exchange resins: 1200H and IRN97H. Korean J Chem Eng 21:187–194

    Article  Google Scholar 

  • Yildiz A, Gur A (2006) Adsorption of phenol and phenol derivatives on pure and modified kaolinite. Asian J Chem 18:2650–2656

    CAS  Google Scholar 

  • Yildiz A, Gur A (2007) Adsorption of phenol and chlorophenols on pure and modified sepiolite. J Serb Chem Soc 72:467–474

    Article  CAS  Google Scholar 

  • Zapico RR, Marin P, Diez FV, Ordonez S (2015) Influence of operation conditions on the copper-catalysed homogeneous wet oxidation of phenol: development of a kinetic model. Chem Eng J 270:122–132

    Article  CAS  Google Scholar 

  • Zhang J, Wang A (2010) Sorption of Pb(II) from aqueous solution by chitosan—gpoly (acrylic acid)/attapulgite/sodium humate composite hydrogels. J Chem Eng Data 55:2379–2384

    Article  CAS  Google Scholar 

  • Zheng XD, Dai JD, Pan JM (2016) Synthesis of beta-cyclodextrin/mesoporous attapulgite composites and their novel application in adsorption of 2, 4, 6-trichlorophenol and 2, 4, 5-trichlorophenol. Desalin Water Treat 57:14241–14250

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by National Key R&D program (2016YFA0601003), the National Natural Science Foundation of China (41101230, 40771203 and 40871243), the Shanghai Science and Technology Committee (10231201600) and the Shanghai Key Laboratory of Bio-Energy Crops (10DZ2271800). We are also grateful for the support of the Grant-in-Aid of Scientific Research from the Japanese Society for the Promotion of Science (No. 23405049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. He.

Additional information

Editorial responsibility: M. Abbaspour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., He, C., Sun, X. et al. Adsorption of phenol from aqueous solution by four types of modified attapulgites. Int. J. Environ. Sci. Technol. 16, 793–800 (2019). https://doi.org/10.1007/s13762-018-1699-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-018-1699-6

Keywords

Navigation