Skip to main content
Log in

Catabolism of 2,4,6-trinitrotoluene byMycobacterium vaccae

  • Original Paper
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Mycobacterium vaccae strain JOB-5 cometabolized 2,4,6-trinitrotoluene (TNT) in the presence of propane as a carbon and energy source. Two novel oxidized metabolites, as well as several known reduced products, were generated during catabolism of TNT byM. vaccae. During the cometabolic process, there was transient production of a brown chromophore. This compound was identified as 4-amino-2,6-dinitrobenzoic acid. WhenM. vaccae was incubated with [14CTNT and propane, 50% of the added radiolabel was incorporated into the cellular lipid fraction. These results suggest that ring cleavage occurred prior to the incorporation of radiolabelled carbon into phosphatidyl-l-serine, phosphatidylethanolamine, cardiolipin, and other polar lipids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beam HW, Perry JJ (1973) Cometabolism as a factor in microbial degradation of cycloparaffinic hydrocarbons. Arch Mikrobiol 91:87–90

    Article  CAS  Google Scholar 

  • Beardsmore AJ, Aperghis PNG, Quayle JR (1982) Characterization of the assimilatory and dissimilatory pathways of carbon metabolism during growth ofMethylophilus methylotrophus on methanol. J Gen Microbiol 128:1423–1439

    CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    CAS  Google Scholar 

  • Burback BL, Perry JJ (1993) Biodegradation and biotransformation of groundwater pollutant mixtures byMycobacterium vaccae. Appl Environ Microbiol 59:1025–1029

    CAS  Google Scholar 

  • Burback BL, Vanderberg LA, Perry JJ (1991) Biodegradation of groundwater pollutants by soil microorganisms (abstract Q-214). Abstr Annu Meet Am Soc Microbiol 91:312

    Google Scholar 

  • Carpenter DF, McCormick NG, Cornell JH, Kaplan AM (1978) Microbial transformation of [14C] labeled 2,4,6-trinitrotoluene in an activated-sludge system. Appl Environ Microbiol 35:949–954

    CAS  Google Scholar 

  • Duque E, Haidour A, Godoy F, Ramos JL (1993) Construction of aPseudomonas hybrid strain that mineralizes 2,4,6-trinitrotoluene. J Bacteriol 175:2278–2283

    CAS  Google Scholar 

  • Fogel MM, Taddeo AR, Fogel S (1986) Biodegradation of chlorinated ethenes by a methane-utilizing mixed culture. Appl Environ Microbiol 51:720–724

    CAS  Google Scholar 

  • Heiman AS, Cooper WT (1987) Solid-state13C-nuclear magnetic resonance spectroscopy of simultaneously metabolized acetate and phenol in a soilPseudomonas sp. Appl Environ Microbiol 53:156–162

    CAS  Google Scholar 

  • Kaplan DL (1989) Biotransformation pathways of hazardous energetic organo-nitro compounds. In: Kamely D, Chakrabarty A, Omenn GS (eds) Biotechnology and biodegradation. Gulf, Houston, Tex

    Google Scholar 

  • Klausmeier RE, Osmon JL, Walls DR (1974) The effect of trinitrotoluene on microorganisms. Dev Ind Microbiol 15:309–317

    CAS  Google Scholar 

  • Klausmeier RE, Appleton JA, DuPre ES, Tenbarge K (1976) The enzymology of trinitroluene reduction. In: Sharpley JM, Kaplan AM (eds) Proceedings of the 3rd International Biodegradation Symposium. Applied Science, Barking, England, pp 799–805

    Google Scholar 

  • McCormick NG, Feeherry FE, Levinson HS (1976) Microbial transformation of 2,4,6-trinitrotoluene and other nitroaromatic compounds. Appl Environ Microbiol 31:949–958

    CAS  Google Scholar 

  • Murphy GL, Perry JJ (1987) Chlorinated fatty acid distribution inMycobacterium convolutum phospholipids after growth on 1-chlorohexadecane. Appl Environ Microbiol 53:10–13

    CAS  Google Scholar 

  • Nichols BW (1964) Separation of plant phospholipids and glycolipids. In: James AT, Morris LJ (eds) New biochemical separations. Nostrand, London, pp 321–337

    Google Scholar 

  • Perry JJ (1980) Propane utilization by microorganisms. Adv Appl Microbiol 26:89–115

    Article  CAS  Google Scholar 

  • Roberts RB, Cowie DB, Abelson PH, Bolton ET, Britten RJ (1955) Studies on biosynthesis inEscherichia coli. Carnegie Inst Wash Publ 607:13–30

    Google Scholar 

  • Smibert RM, Krieg NR (1981) General characterization. In: Gerhardt P (ed) Manual of methods for general bacteriology. American Society for Microbiology, Washington, DC, p 439

    Google Scholar 

  • Smith GA, Nickels JS, Herger BD, Davis JD, Collins SP (1986) Quantitative characterization of microbial biomass and community structure in subsurface material: a prokaryotic consortium responsive to organic contamination. Can J Microbiol 32:104–111

    CAS  Google Scholar 

  • Spain JC, Gibson DT (1991) Pathway for biodegradation ofp-nitrophenol in aMoraxella sp. Appl Environ Microbiol 57:812–819

    CAS  Google Scholar 

  • Spanggord RJ, Spain JC, Nishino SF, Mortelmans KE (1991) Biodegradation of 2,4-dinitrotoluene by aPseudomonas sp. Appl Environ Microbiol 57:3200–3205

    CAS  Google Scholar 

  • Vanderberg LA, Perry JJ (1992) Biodegradation of chlorinated alkanes by soil microorganisms (abstract Q-284) Abstr Annu Meet Am Soc Microbiol 92:382

    Google Scholar 

  • Vanderberg LA, Perry JJ (1994) Characterization of dehalogenation inMycobacterium vaccae: role of the propane monooxygenase. Can J Microbiol 40:169–172

    CAS  Google Scholar 

  • Vanderberg LA, Unkefer PJ, Perry JJ (1993) Catabolism of 2,4,6-trinitroluene byMycobacterium vaccae strain JOB-5 (abstract Q-412). Abstr Annu Meet Am Soc Microbiol 93:421

    Google Scholar 

  • Vestal JR, Perry JJ (1969) Divergent metabolic pathways for propane and propionate utilization by a soil isolate. J Bacteriol 99:216–221

    CAS  Google Scholar 

  • Vestal JR, Perry JJ (1971) Effect of substrate on the lipids of the hydrocarbon-utilizingMycobacterium vaccae. Can J Microbiol 17:445–449

    Article  CAS  Google Scholar 

  • Vorbeck C, Lenke H, Fischer P, Knackmuss H-J (1994) Identification of a hydride-Meisenheimer complex as a metabolite of 2,4,6-trinitrotoluene by aMycobacterium strain. J Bacteriol 176:932–934

    CAS  Google Scholar 

  • Wayne LG, Kubica GP (1986) Family: Mycobacteriaceae. In: Sneath PHA, Mair NS, Sharpe ME, Hold JG (ed) Bergey's manual of systematic bacteriology, 9th edn, vol 2. Williams & Wilkins, Baltimore, Md, pp 1436–1457

    Google Scholar 

  • Won WD, Heckly RJ, Glover DJ, Hoffsommer JC (1974) Metabolic disposition of 2,4,6-trinitrotoluene. Appl Environ Microbiol 27:513–516

    CAS  Google Scholar 

  • Won WD, DiSalvo LH, Ng J (1976) Toxicity and mutagenicity of 2,4,6-trinitrotoluene and its microbial metabolites. Appl Environ Microbiol 31:576–580

    CAS  Google Scholar 

  • Zeyer J, Kearney PC (1984) Degradation ofo-nitrophenol andm-nitrophenol by aPseudomonas putida. J Agric Food Chem 32:238–242

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vanderberg, L.A., Perry, J.J. & Unkefer, P.J. Catabolism of 2,4,6-trinitrotoluene byMycobacterium vaccae . Appl Microbiol Biotechnol 43, 937–945 (1995). https://doi.org/10.1007/BF02431931

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02431931

Keywords

Navigation