Skip to main content
Log in

Optimization of ammonia removal by ion-exchange resin using response surface methodology

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The ability of ion-exchange resin for ammonia removal from aqueous solution was studied. The results showed that Amberlite ion-exchange resin was effective in removing ammonia from aqueous solution. Factorial design and response surface methodology were applied to evaluate and optimize the effects of pH, resin dose, contact time, temperature and initial ammonia concentration. Low pH condition was preferred with the optimum pH found to be 6. High resin dose generated high removal rate and low exchange capacity. Results of factorial design and response surface methodology showed that temperature was not a significant parameter. The model prediction was in good agreement with observed data (R 2 = 0.957). The optimum Q e was 28.78 mg/g achieved at pH = 6 and initial TAN concentration of 3000 mg/L. The kinetics followed the pseudo-second-order kinetic model (R 2 = 0.999). Equilibrium data were fitted to Langmuir and Freundlich isotherm models with Langmuir model providing a slightly better predication (R 2 = 0.996). The resin was completely regenerated by 2 N H2SO4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bashir MJ, Aziz HA, Yusoff MS, Huqe AA, Mohajeri S (2010a) Effects of ion exchange resins in different mobile ion forms on semi-aerobic landfill leachate treatment. Water Sci Technol 61:641–649. doi:10.2166/wst.2010.867

    Article  CAS  Google Scholar 

  • Bashir MJK, Aziz HA, Yusoff MS, Adlan MN (2010b) Application of response surface methodology (RSM) for optimization of ammoniacal nitrogen removal from semi-aerobic landfill leachate using ion exchange resin. Desalination 254:154–161. doi:10.1016/j.desal.2009.12.002

    Article  CAS  Google Scholar 

  • Bernal MP, Lopez-Real JM (1993) Natural zeolites and sepiolite as ammonium and ammonia adsorbent materials. Bioresour Technol 43:27–33. doi:10.1016/0960-8524(93)90078-p

    Article  CAS  Google Scholar 

  • Cheremisinoff NP (2001) Handbook of water and wastewater treatment technologies. Butterworth-Heinemann, Woburn, MA, USA

    Google Scholar 

  • Ding Y, Sartaj M (2015) Statistical analysis and optimization of ammonia removal from aqueous solution by zeolite using factorial design and response surface methodology. J Environ Chem 3:807–814. doi:10.1016/j.jece.2015.03.025

    Article  CAS  Google Scholar 

  • Dong S, Sartaj M (2016) Statistical analysis and optimization of ammonia removal from landfill leachate by sequential microwave/aeration process using factorial design and response surface methodology. J Environ Chem Eng 4:100–108. doi:10.1016/j.jece.2015.10.029

    Article  CAS  Google Scholar 

  • Dow Chemical Company (2013) http://www.dowwaterandprocess.com/en/Products/A/AMBERLITE_IR120_H

  • Du Q, Liu S, Cao Z, Wang Y (2005) Ammonia removal from aqueous solution using natural Chinese clinoptilolite. Sep Purif Technol 44:229–234. doi:10.1016/j.seppur.2004.04.011

    Article  CAS  Google Scholar 

  • Gotvajn AZ, Tisler T, Zagorc-Koncan J (2009) Comparison of different treatment strategies for industrial landfill leachate. J Hazard Mater 162:1446–1456. doi:10.1016/j.jhazmat.2008.06.037

    Article  CAS  Google Scholar 

  • Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465

    Article  CAS  Google Scholar 

  • Jorgensen TC, Weatherley LR (2003) Ammonia removal from wastewater by ion exchange in the presence of organic contaminants. Water Res 37:1723–1728. doi:10.1016/s0043-1354(02)00571-7

    Article  CAS  Google Scholar 

  • Karadag D, Koc Y, Turan M, Armagan B (2006) Removal of ammonium ion from aqueous solution using natural Turkish clinoptilolite. J Hazard Mater 136:604–609

    Article  CAS  Google Scholar 

  • Karadag D, Tok S, Akgul E, Turan M, Ozturk M, Demir A (2008) Ammonium removal from sanitary landfill leachate using natural Gördes clinoptilolite. J Hazard Mater 153:60–66

    Article  CAS  Google Scholar 

  • Lee SM, Jung JY, Chung YC (2000) Measurement of ammonia inhibition of microbial activity in biological wastewater treatment process using dehydrogenase assay. Biotechnol Lett 22:991–994

    Article  CAS  Google Scholar 

  • Lei L, Li X, Zhang X (2008) Ammonium removal from aqueous solutions using microwave-treated natural Chinese zeolite. Sep Purif Technol 58:359–366. doi:10.1016/j.seppur.2007.05.008

    Article  CAS  Google Scholar 

  • Letterman RD (1999) Water quality and treatment: a handbook of community water supplies. McGraw-Hill, New York

    Google Scholar 

  • Lin SH, Wu CL (1996) Ammonia removal from aqueous solution by ion exchange. Ind Eng Chem Res 35:553–558

    Article  CAS  Google Scholar 

  • Lin L, Wan C, Lee D-J, Lei Z, Liu X (2014) Ammonium assists orthophosphate removal from high-strength wastewaters by natural zeolite. Sep Purif Technol 133:351–356. doi:10.1016/j.seppur.2014.07.010

    Article  CAS  Google Scholar 

  • Liu CH, Lo KV (2001) Ammonia removal from composting leachate using zeolite. I. Characterization of the zeolite. J Environ Sci Health A 36:1671–1688. doi:10.1081/ese-100106251

    Article  CAS  Google Scholar 

  • Liu J, Luo J, Zhou J, Liu Q, Qian G, Xu ZP (2012) Inhibitory effect of high-strength ammonia nitrogen on bio-treatment of landfill leachate using EGSB reactor under mesophilic and atmospheric conditions. Bioresour Technol 113:239–243

    Article  CAS  Google Scholar 

  • Marttinen S, Kettunen R, Sormunen K, Soimasuo R, Rintala J (2002) Screening of physical–chemical methods for removal of organic material, nitrogen and toxicity from low strength landfill leachates. Chemosphere 46:851–858

    Article  CAS  Google Scholar 

  • Montgomery DC (2008) Design and analysis of experiments. Wiley, New York

    Google Scholar 

  • Nair A, Sartaj M, Kennedy K, Coelho NM (2014) Enhancing biogas production from anaerobic biodegradation of the organic fraction of municipal solid waste through leachate blending and recirculation. Waste Manag Res 32:939–946. doi:10.1177/0734242X14546036

    Article  Google Scholar 

  • Ölmez T (2009) The optimization of Cr(VI) reduction and removal by electrocoagulation using response surface methodology. J Hazard Mater 162:1371–1378

    Article  Google Scholar 

  • Rahmani A, Mahvi A, Mesdaghinia A, Nasseri S (2004) Investigation of ammonia removal from polluted waters by Clinoptilolite zeolite. Int J Environ Sci Technol 1:125–133

    Article  CAS  Google Scholar 

  • Randall D, Tsui T (2002) Ammonia toxicity in fish. Mar Pollut Bull 45:17–23

    Article  CAS  Google Scholar 

  • Sapsford R, Jupp V (2006) Data collection and analysis. Sage, Beverly Hills

    Book  Google Scholar 

  • Sharma S, Malik A, Satya S (2009) Application of response surface methodology (RSM) for optimization of nutrient supplementation for Cr(VI) removal by Aspergillus lentulus AML05. J Hazard Mater 164:1198–1204

    Article  CAS  Google Scholar 

  • Umpleby RJ II, Baxter SC, Rampey AM, Rushton GT, Chen Y, Shimizu KD (2004) Characterization of the heterogeneous binding site affinity distributions in molecularly imprinted polymers. J Chromatogr B 804:141–149

    Article  CAS  Google Scholar 

  • Wang YF, Lin F, Pang WQ (2007) Ammonium exchange in aqueous solution using Chinese natural clinoptilolite and modified zeolite. J Hazard Mater 142:160–164

    Article  CAS  Google Scholar 

  • Xu C, Wang J, Yang T, Chen X, Liu X, Ding X (2014) Adsorption of uranium by amidoximated chitosan-grafted polyacrylonitrile, using response surface methodology. Carbohydr Polym 121:79–85

    Article  Google Scholar 

  • Zhang L, Zhang H, Guo W, Tian Y (2013) Sorption characteristics and mechanisms of ammonium by coal by-products: slag, honeycomb-cinder and coal gangue. Int J Environ Sci Technol 10:1309–1318

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support provided by Ontario Research Fund-Research Excellence (ORF-RE02-007) is acknowledged and appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sartaj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Sartaj, M. Optimization of ammonia removal by ion-exchange resin using response surface methodology. Int. J. Environ. Sci. Technol. 13, 985–994 (2016). https://doi.org/10.1007/s13762-016-0939-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-016-0939-x

Keywords

Navigation