Skip to main content
Log in

Removal of Phosphate from Aqueous Solution Using Anion Exchange Resin: Equilibrium Isotherms and Kinetics

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Phosphate removal before discharging wastewater into the receiving environment is important since eutrophication has become an environmental problem on a global scale. In this study, phosphate ion removal from aqueous solutions was investigated using a strong anion exchange resin, Purolite A200E. The effects of initial phosphate ion concentration, initial pH value of the solution, resin dosage, stirring speed, presence of some anions in solution, and temperature on the ion exchange process were researched. Resin dosage, stirring speed, and temperature increases were determined to increase the phosphate removal rate. The highest phosphate removal efficiency was observed in the pH interval 7–9. With initial phosphate concentration of 10 and 20 mg/L, 1.50 g/500 mL resin dosage fully removed phosphate at the end of 120 min. However, at phosphate concentrations higher than 20 mg/L, increasing phosphate concentrations caused a reduction in removal efficiency. The competitive anion with the most effect on phosphate removal was sulfate while adding bicarbonate did not affect phosphate removal. Pseudo-first-order (PFO) and pseudo-second-order (PSO) kinetic models were used to assess experimental data. Kinetic studies revealed that the ion exchange process can be explained better by the PFO kinetic model. Equilibrium isotherm data were analyzed with the Freundlich and Langmuir equations, and the Freundlich isotherm model fitted the equilibrium data better.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The authors declare that the data supporting the findings of this study are available within the paper.

References

  1. W. Huang, Y. Zhang, D. Li, J. Environ. Manage. 193, 470 (2017)

    Article  CAS  PubMed  Google Scholar 

  2. L. Delgadillo-Velasco, V. Hernández-Montoya, N.A. Rangel-Vázquez, F.J. Cervantes, M.A. Montes-Morán, M. del R. Moreno-Virgen, J. Mol. Liq. 262, 443 (2018)

  3. R. Zhang, T. Leiviskä, S. Taskila, J. Tanskanen, J. Environ. Manage. 218, 271 (2018)

    Article  CAS  PubMed  Google Scholar 

  4. E. Yildiz, Sep. Purif. Technol. 35, 241 (2004)

    Article  CAS  Google Scholar 

  5. L. Zeng, X. Li, J. Liu, Water Res. 38, 1318 (2004)

    Article  CAS  PubMed  Google Scholar 

  6. K. Zhou, B. Wu, L. Su, W. Xin, X. Chai, Chem. Eng. J. 345, 640 (2018)

    Article  CAS  Google Scholar 

  7. B. An, S. Lee, H.G. Kim, D. Zhao, J.A. Park, J.W. Choi, J. Ind. Eng. Chem. 69, 211 (2018)

    Article  Google Scholar 

  8. C. Munyati, Sustain. Water Qual. Ecol. 6, 31 (2015)

    Article  Google Scholar 

  9. B.M. Padedda, N. Sechi, G.G. Lai, M.A. Mariani, S. Pulina, M. Sarria, C.T. Satta, T. Virdis, P. Buscarinu, A. Lugliè, Glob. Ecol. Conserv. 12, 21 (2017)

    Article  Google Scholar 

  10. T.H. Bui, S.P. Hong, J. Yoon, Water Res. 134, 21 (2018)

    Article  Google Scholar 

  11. Surface water quality management regulation in Türkiye (Official Gazette, Reference no: 28483), https://www.resmigazete.gov.tr/eskiler/2012/11/20121130-5.htm Accessed 26 May 2023

  12. S. Wiriyathamcharoen, S. Sarkar, P. Jiemvarangkul, T.T. Nguyen, W. Klysubun, S. Padungthon, Chem. Eng. J. 381, 122671 (2020)

    Article  CAS  Google Scholar 

  13. G. Tchobanoglous, F.L. Burton, H.D. Stensel, Wastewater Treatment and Reuse Technologies, 4th edn. (McGraw-Hill, New York, 2004), pp.524–1194

    Google Scholar 

  14. T. Clark, T. Stephenson, P.A. Pearce, Water Res. 31, 2557 (1997)

    Article  CAS  Google Scholar 

  15. K.S. Hashim, R. Al Khaddar, N. Jasim, A. Shaw, D. Phipps, P. Kot, M.O. Pedrola, A.W. Alattabi, M. Abdulredha, R. Alawsh, Sep. Purif. Technol. 210, 135 (2019)

  16. E.M. Van Voorthuizen, A. Zwijnenburg, M. Wessling, Water Res. 39, 3657 (2005)

    Article  PubMed  Google Scholar 

  17. K. Kalaitzidou, M. Mitrakas, C. Raptopoulou, A. Tolkou, P.A. Palasantza, A. Zouboulis, Environ. Process. 3, 5 (2016)

    Article  Google Scholar 

  18. R. Liu, L. Chi, X. Wang, Y. Sui, Y. Wang, H. Arandiyan, J. Environ. Chem. Eng. 6, 5269 (2018)

    Article  CAS  Google Scholar 

  19. Z. Ajmal, A. Muhmood, M. Usman, S. Kizito, J. Lu, R. Dong, S. Wu, J. Colloid Interface Sci. 528, 145 (2018)

    Article  CAS  PubMed  Google Scholar 

  20. B. Xing, T. Chen, H. Liu, C. Qing, J. Xie, Q. Xie, J. Taiwan Inst. Chem. Eng. 80, 875 (2017)

    Article  CAS  Google Scholar 

  21. P. Cheng, D. Chen, H. Liu, X. Zou, Z. Wu, J. Xie, C. Qing, D. Kong, T. Chen, J. Mol. Liq. 254, 145 (2018)

    Article  CAS  Google Scholar 

  22. J. Ray, S. Jana, T. Tripathy, Int. J. Biol. Macromol. 109, 492 (2018)

    Article  CAS  PubMed  Google Scholar 

  23. M. Kalaruban, P. Loganathan, W.G. Shim, J. Kandasamy, G. Naidu, T.V. Nguyen, S. Vigneswaran, Sep. Purif. Technol. 158, 62 (2016)

    Article  CAS  Google Scholar 

  24. M.R. Awual, A. Jyo, Desalination 281, 111 (2011)

    Article  CAS  Google Scholar 

  25. M. Caetano, C. Valderrama, A. Farran, J.L. Cortina, J. Colloid Interface Sci. 338, 402 (2009)

    Article  CAS  PubMed  Google Scholar 

  26. Z. Wen, K. Huang, Y. Niu, Y. Yao, S. Wang, Z. Cao, H. Zhong, Colloids Surf. A Physicochem. Eng. Asp. 558, 124021 (2019)

    Google Scholar 

  27. B. Aşçi, E. Kövenç, Ö. Arar, M. Arda, Glob. NEST J. 20, 368 (2018)

    Article  Google Scholar 

  28. M.J.K. Bashir, H.A. Aziz, M.S. Yusoff, M.N. Adlan, Desalination 254(1–3), 154 (2010)

    Article  CAS  Google Scholar 

  29. M.D. Víctor-Ortega, J.M. Ochando-Pulido, A. Martínez-Ferez, Ecol. Eng. 86, 53 (2016)

    Article  Google Scholar 

  30. L.C. Lin, R.S. Juang, Chem. Eng. J. 132(1–3), 205 (2007)

    Article  CAS  Google Scholar 

  31. R. Kumar, M. Kumar, R. Ahmad, M.A. Barakat, Chem. Eng. J. 218, 32 (2013)

    Article  CAS  Google Scholar 

  32. T. Nur, W.G. Shim, P. Loganathan, S. Vigneswaran, J. Kandasamy, Int. J. Environ. Sci. Technol. 12, 1311 (2015)

    Article  CAS  Google Scholar 

  33. H. Dong, T. Lin, A.K. SenGupta, J. Water Process Eng. 36, 101347 (2020)

    Article  Google Scholar 

  34. L. Fang, B. Wu, J.K.M. Chan, I.M.C. Lo, Chemosphere 192, 209 (2018)

    Article  CAS  PubMed  Google Scholar 

  35. N. Değermenci, Eur. J. Sci. Technol. 23, 272 (2021)

    Google Scholar 

  36. M.A. Stylianou, V.J. Inglezakis, K.G. Moustakas, S.P. Malamis, M.D. Loizidou, Desalination 215(103), 133 (2007)

    Article  CAS  Google Scholar 

  37. M. Korkmaz, C. Özmetin, B.A. Fil, Clean: Soil, Air, Water 44, 949 (2016)

    CAS  Google Scholar 

  38. W. Gu, X. Li, M. Xing, W. Fang, D. Wu, Sci. Total Environ. 619–620, 42 (2018)

    Article  PubMed  Google Scholar 

  39. A. Sowmya, S. Meenakshi, Desalin. Water Treat. 51(37–39), 7145 (2013)

    Article  CAS  Google Scholar 

  40. Ö. Aydin, C. Özmetin, M. Korkmaz, B.A. Fil, Part. Sci. Technol. 35, 505 (2017)

    Article  CAS  Google Scholar 

  41. M. Zarrabi, M.M. Soori, M.N. Sepehr, A. Amrane, S. Borji, H.R. Ghaffari, Environ. Eng. Manag. J. 13, 891 (2014)

    Article  CAS  Google Scholar 

  42. G. Darracq, J. Baron, M. Joyeux, J. Water Process Eng. 3, 123 (2014)

    Article  Google Scholar 

  43. S. Lagergren, K. Sven, Vetenskapsakad. Handl. 24, 1 (1898)

    Google Scholar 

  44. G. Blanchard, M. Maunaye, G. Martin, Water Res. 18, 1501 (1984)

    Article  CAS  Google Scholar 

  45. É.C. Lima, M.A. Adebayo, F.M. Machado, in Carbon Nanomaterials as Adsorbents for Environmental and Biological Applications, ed. C.P. Bergmann, F.M. Machado (Springer, Switzerland, 2015), p. 33.

  46. J. Lin, L. Wang, Front. Environ. Sci. Eng. China 3, 320 (2009)

    Article  CAS  Google Scholar 

  47. J.P. Simonin, Chem. Eng. J. 300, 254 (2016)

    Article  CAS  Google Scholar 

  48. L. Dong, L. Hou, Z. Wang, P. Gu, G. Chen, R. Jiang, J. Hazard. Mater. 359, 76 (2018)

    Article  CAS  PubMed  Google Scholar 

  49. G.D. Değermenci, N. Değermenci, V. Ayvaoğlu, E. Durmaz, D. Çakır, E. Akan, J. Cleaner Prod. 225, 1220 (2019)

    Article  Google Scholar 

  50. B. Sheeka Subramani, S. Shrihari, B. Manu, K.S. Babunarayan, J. Environ. Manage. 246, 345 (2019)

  51. I. Langmuir, J. Am. Chem. Soc. 40, 1361 (1918)

    Article  CAS  Google Scholar 

  52. E.N. El Qada, S.J. Allen, G.M. Walker, Chem. Eng. J. 124(1–3), 103 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

We are sincerely grateful to Purolite for the ion exchange resin sample and to Kastamonu University Department of Environmental Engineering students Esma Esra Gurel, Seda Altingul and Simay Bulbul for their assistance with phosphate experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nejdet Değermenci.

Ethics declarations

Conflict of Interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korkmaz, C., Değermenci, G.D. & Değermenci, N. Removal of Phosphate from Aqueous Solution Using Anion Exchange Resin: Equilibrium Isotherms and Kinetics. Fibers Polym 24, 3753–3760 (2023). https://doi.org/10.1007/s12221-023-00355-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00355-w

Keywords

Navigation