Skip to main content
Log in

Effects of algicide on the growth of Microcystis flos-aquae and adsorption capacity to heavy metals

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

In this paper, the effects of salicylic acid (SA) algicide carried by cross-linked chitosan on the inhibition of Microcystis flos-aquae and the removal ability of heavy metals Pb and Ni in compound polluted water were studied. The results showed that the algicide had significant inhibitory effects on Microcystis flos-aquae: when the concentrations were 550 and 700 mg L−1, the inhibition time was up to 13 days or more, and the inhibition rate was as high as 99 %. The algicide exhibited strong adsorption capacity to heavy metals Pb and Ni. The adsorption rates of the algicide at concentrations of 400 and 550 mg L−1 on Ni and Pb were 61 and 64.9 %, 71.2 and 72.5 % at 13 days, respectively. The algicide allows a slow release of SA and long-term inhibition of algae and has better adsorption capacity on heavy metals, thus providing a method for the effective control of eutrophication and combined heavy metal pollution in water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Athena W, Merrill DH, David MG (2007) Metal complexation of chitosan and its glutaraldehyde cross-linked derivative. Carbohydr Res 342(9):1189–1201

    Article  Google Scholar 

  • Bailey SE, Olin TJ, Bricka RM, Adrian DD (1999) A review of potentially low-cost sorbents for heavy metals. Water Res 33(11):2469–2479

    Article  CAS  Google Scholar 

  • Baroni P, Vieira RS, Meneghetti E, da Silva MGC, Beppu MM (2008) Evaluation of batch adsorption of chromium ions on natural and crosslinked chitosan membranes. J Hazard Mater 152(3):1155–1163

    Article  CAS  Google Scholar 

  • Chang SC, Li CH, Lin JJ, Li YH, Lee MR (2014) Effective removal of Microcystis aeruginosaand microcystin-LR using nanosilicate platelets. Chemosphere 99:49–55

    Article  CAS  Google Scholar 

  • Chen SJ, ZhengWJ Yang F (2006) Study advances on heavy metals bio-absorbed by cyanobacteria. Marine Environ Sci 25(4):103–106

    Google Scholar 

  • Chen AW, Yang CY, Chen CY, Chen CY, Chen CW (2009) The chemically crosslinked metal-complexed chitosans for comparative adsorptions of Cu(II), Zn(II), Ni(II) and Pb(II) ions in aqueous medium. J Hazard Mater 163(2–3):1068–1075

    Article  CAS  Google Scholar 

  • Chen K, Zhou YH, Zhang HJ (2012) Pollution evaluation of heavy metal element of water and surface sediment in the Dongchang Lake. Period Ocean Univ China 42(10):97–105

    Google Scholar 

  • Fan W, Xu Z (2011) Biosorption of nickel ion by Chitosan-immobilized Brown Algae Laminaria japonica. Chem Biochem Eng Q 25(2):247–254

    CAS  Google Scholar 

  • Guibal E (2004) Interactions of metal ions with chitosan-based sorbents: a review. Sep Purif Technol 38(1):43–74

    Article  CAS  Google Scholar 

  • Haddadchi GR, Gerivani Z (2009) Effects of phenolic extracts of canola (Brassica napuse L.) on germination and physiological responses of soybean (Glycin max L.) seedlings. Int J Plant Prod 3(1):63–73

    Google Scholar 

  • Heinz WG. (2003) Phytoplankton Analyzer Phyto-Pam and Phyto-Win Software V 1.45. Effeltrich, Germany

  • Hou DY, Feng J, Xie SL (2012) Toxic effects of nanoparticle TiO2 stress on Chara vulgaris L. Acta Scientiae Circumstantiae 32(6):1481–1486

    CAS  Google Scholar 

  • Hu HY, Zhu H (2012) Adsorption of heavy metal ions by chitosan and its derivatives. Prog Chem 24(11):2212–2222

    CAS  Google Scholar 

  • Imran A, Mohd A, Tabrez AK (2012) Low cost adsorbents for the removal of organic pollutants from wastewater. J Environ Manag 113:170–183

    Article  Google Scholar 

  • Jeon C, Park KH (2005) Adsorption and desorption characteristics of mercury(II) ions using aminated chitosan bead. Water Res 39:3938–3944

    Article  CAS  Google Scholar 

  • Ji JG, Hao SL, Wu DJ, Liu L, Chen JD, Xu Y (2011) Preparation, characterization and in vitro release of chitosan nanoparticles loaded with gentamicin and salicylic acid. Carbohydr Polym 85(4):803–808

    Article  CAS  Google Scholar 

  • Jiang D, Huang LF, Lin SQ, Li YX (2010) Allelopathic effects of euhalophyte Salicornia bigelovii on marine alga Skeletonema costatum. Allelopathy 25(1):163–172

    Google Scholar 

  • Jiang J, Li L, Li HP, Li FL (2012) Biosorption of lead(II) and cadmium(II) from aqueous solution by Chlorella pyrenoidsa and its influential factors. Acta Ecologica Sinica 32(7):1995–2003

    Article  CAS  Google Scholar 

  • Kocak N, Sahin M, Arslan G, Ucan HI (2012) Synthesis of crosslinked chitosan possessing schiff base and its use in metal removal. J Inorg Organomet Polym Mater 22(1):166–177

    Article  CAS  Google Scholar 

  • Kovacik J, Klejdus B, Hedbavny J, Backor M (2010) Effect of copper and salicylic acid on phenolic metabolites and free amino acids in Scenedesmus quadricauda(Chlorophyceae). Plant Sci 178(3):307–311

    Article  CAS  Google Scholar 

  • Kumar MNVR (2000) A review of chitin and chitosan applications. React Funct Polym 46(1):1–27

    Article  CAS  Google Scholar 

  • Li ZH, Wang Q, Ruan X, Pan CD, Jiang D (2010) Phenolics and plant allelopathy. Molecules 15(12):8933–8952

    Article  CAS  Google Scholar 

  • Ngah WSW, Endud CS, Mayanar R (2002) Removal of copper(II) ions from aqueous solution onto chitosan and cross-linked chitosan beads[J]. React Funct Polym 50(2):181–190

    Article  CAS  Google Scholar 

  • Nikulina A, Dullo WC (2009) Eutrophication and heavy metal pollution in the Flensburg Fjord: a reassessment after 30 years. Mar Pollut Bull 58(6):905–915

    Article  CAS  Google Scholar 

  • Ouyang HL, Kong XZ, Qin N, He W, He QS, Wang Y, Wang R, Xu FL (2012) Effects of five heavy metals at sub-lethal concentrations on the growth and photosynthesis of Chlorella vulgaris. Chin Sci Bull 57(10):785–793

    Google Scholar 

  • Poulson KL, Sieg RD, Prince EK, Kubanek J (2010) Allelopathic compounds of a red tide dinoflagellate have species-specific and context-dependent impacts on phytoplankton. Mar Ecol Prog Ser 416:69–78

    Article  CAS  Google Scholar 

  • Rangsayatorn N, Upatham ES, Kruatrachue M, Pokethitiyook P, Lanza GR (2002) Phytoremediation potential of Spirulina (Arthrospira) platensis: biosorption and toxicity studies of cadmium. Environ Pollut 119(1):45–53

    Article  CAS  Google Scholar 

  • Tran HV, Tran LD, Nguyen TN (2010) Preparation of chitosan/magnetite composite beads and their application for removal of Pb(II) and Ni(II) from aqueous solution. Mater Sci Eng C Mater Biol Appl 30(2):304–310

    Article  CAS  Google Scholar 

  • Vidhyavathi R, Sarada R (2011) Effect of salicylic acid and methyl jasmonate on antioxidant systems of Haematococcus pluvialis. Acta Physiol Plant 33(3):1043–1049

    Article  Google Scholar 

  • Wei XH, Niu YP, Xu YY, Du YZ, Hu FQ, Yuan H (2010) Salicylic acid-grafted chitosan oligosaccharide nanoparticle for paclitaxel delivery. J Bioact Compat Polym 25(3):319–335

    Article  CAS  Google Scholar 

  • Wu C, Chang XX, Dong HJ, Li DF, Liu JY (2008) Allelopathic inhibitory effect of Myriophyllum aquaticum (Vell.) Verdc. on Microcystis aeruginosa and its physiological mechanism. Acta Ecologica Sinica 28(6):2595–2603

    Article  CAS  Google Scholar 

  • Wu FC, Tseng RL, Juang RS (2010) A review and experimental verification of using chitosan and its derivatives as adsorbents for selected heavy metals. J Environ Manag 91(4):798–806

    Article  CAS  Google Scholar 

  • Xin MH, Li MC, Zhang XS, Gu DD, Deng J (2009) Preparation of chitosan microspheres modified by α-ketoglutaric acid and their adsorption property. Polym Mater Sci Eng 25(1):133–136

    CAS  Google Scholar 

  • Yang H, Yuan B, Lu YB, Cheng RS (2008) Preparation of magnetic PAA/chitosan microspheres and its application in wastewater treatment. Scientia Sinica Chimica 38(9):755–761

    Google Scholar 

  • Yang F, Liu HJ, Qu JH, Chen JP (2011) Preparation and characterization of chitosan encapsulated Sargassum sp. biosorbent for nickel ions sorption. Bioresour Technol 102:2821–2828

    Article  CAS  Google Scholar 

  • You LX, Wang P, Kong CH (2011) The levels of jasmonic acid and salicylic acid in a rice-barnyardgrass coexistence system and their relation to rice allelochemicals. Biochem Syst Ecol 39(4–6):491–497

    Article  CAS  Google Scholar 

  • Zhang TT, Wu AP, He M, Chen CP, Nie LW (2007) The allelopathy and its mechanism of phenolic acids on water-bloom algae. China Environ Sci 27(4):472–476

    Google Scholar 

  • Zhen HB, Hu YY, Cheng JH (2011) Adsorption of Cu2+, Ni2+and Cd2+ by chitosan cross-linked zeolite beads. Acta Scientiae Circumstantiae 31(7):1369–1376

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (No. 20777021), Ministry of Education, Key Research Project of Science and Technology (No. 210253), and the Natural Science Foundation of Fujian Province of China (No. 2010J01043, D0610012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Y. Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, P.Y., Liu, Y., Wen, X. et al. Effects of algicide on the growth of Microcystis flos-aquae and adsorption capacity to heavy metals. Int. J. Environ. Sci. Technol. 12, 2339–2348 (2015). https://doi.org/10.1007/s13762-014-0633-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-014-0633-9

Keywords

Navigation