Skip to main content
Log in

Comparison of air and steam stripping: removal of organic halogen compounds from process wastewaters

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

In the engineering practice, there are two basic alternatives of physicochemical treatment for the removal of volatile compounds from process wastewaters: stripping with air or stripping with steam. In this work, these alternatives are investigated and compared in the case of a real industrial problem that is typical for the fine chemical industry and general conclusion is drawn. The removal of the organically bound halogens, called adsorbable organically bound halogens, is investigated. The two alternatives, air and steam stripping, are first modeled in the professional software environment of ASPEN Plus®. The model is validated on the data of an existing air stripper for the removal of organic halogens. Same organic halogens removal is applied for the design of a steam stripper. It is proved that the steam stripping shows better operability and economic performance than the air stripping; moreover, the volatile and/or adsorbable organically bound halogen compounds can be recovered in the distillate and they can be reused improving the sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alfke G, Bunch G, Crociani G, Dando D, Fontaine M, Goodsell P, Green A, Hafker W, Isaak G, Marvillet J, Poot B, Sutherland H, van der Rest A, van Oudenhoven J, Walden T (1999) Best available techniques to reduce emission from refineries. CONCAWE. Document no. 99/01. Accessed 11 Mar 2013. http://193.219.133.6/aaa/Tipk/tipk/4_kiti%20GPGB/43.pdf

  • Asia IO, Akporhonor EE (2007) Characterization and physicochemical treatment of wastewater from rubber processing factory. Int J Phys Sci 2:61–67

    Google Scholar 

  • Bajnoczy G (2013) http://enfo.agt.bme.hu/drupal/sites/default/files/ea-CHCl%20dioxin.pdf (in Hungarian). Accessed 23 Aug 2013

  • Basakcilardan-kabakci S, Ipekoglu AN, Talinli I (2007) Recovery of ammonia from human urine by stripping and absorption. Environ Eng Sci 24:615–624. doi:10.1089/ees2006.0412

    Article  CAS  Google Scholar 

  • Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (BMU) (2000) Hinweise und Erläuterungen zu Anhang 22 der Abwasserverordnung. Book, Germany

  • Budapest Sewage Works Ltd. (2013) Sewer usage charge. http://fcsm.hu/hu/ugyfelszolgalat/szolgaltatasi_dijak/csatornahasznalati_dij/. Accessed 7 Mar 2013

  • Chempack Co. (2007) Polyhedral hollow ball. http://www.chemical-packing.com/products/plastic/2007-08-25/33.html. Accessed 11 Mar 2013

  • DIN 38409-H14 (1996) Water quality determination of adsorbable organically bound halogens (AOX)

  • Douglas JM (1989) Conceptual design of chemical processes. McGrew-Hill, New York, pp 568–580

    Google Scholar 

  • Driscoll TP, Barber JB, Chandran K, Constable S, Darnell C, DiMenna R, Gaines B, Goodman A, Hlavek R, Johns FJ, Jones TS, Kemp G, Kim B, Krill WP, Maillacheruvu K, Millano EF, Nichols C, Parham G, Philbrook D, Severin BF, Shamas J, Shamskhorzani R, Solvie J, Venkatasubbiah V, Wirtz R, Wong-Chong G, Yeh B, Young J (2008) Industrial wastewater management, treatment, and disposal. WEF manual of practice no. FD-3rd. Mcgraw-Hill, New York, pp 474–489

  • Ecker A, Winter B (2000) Stand der Technik bei Raffinerien im Hinblick auf die IPPC-Richtlinie. Monographien, Band 119. Umweltbundesamt GmbH, Federal Envionment Agency, Wien, Austria. http://www.umweltbundesamt.at/fileadmin/site/publikationen/M119z.pdf. Accessed 11 Mar 2013

  • ENTEC UK Ltd. (1996) Cost-effective separation technologies for minimising wastes and effluents. Report. Environmental technology best practice programme, guide GG37

  • European Environment Agency (EEA) (1997) Effluent treatment techniques—technical guidance note (abatement) no. A4, UK

  • Ferrer J, Seco A, Serralta J, Ribes J, Manga J, Asensi E, Morenilla JJ, Llavador F (2008) DESASS: a software tool for designing, simulating and optimising WWTPs. Environ Model Softw 23:19–26. doi:10.1016/j.envsoft.2007.04.005

    Article  Google Scholar 

  • Fredenslund A, Jones RL, Prausnitz JM (1975) Group-contribution estimation of activity coefficients in nonideal liquid mixtures. AlChE J 21:1086–1099. doi:10.1002/aic.690210607

    Article  CAS  Google Scholar 

  • Gmehling J, Menke J, Krafczyk J, Fischer K (1994) Azeotropic data, part I. Wiley-VCH, Weinheim

    Google Scholar 

  • Gonzalez-Velasco JR, Aranzabal A, Gutierrez-Ortiz JI, Lopez-Fonseca R, Gutierrez-Ortiz MA (1998) Activity and product distribution of alumina supported platinum and palladium catalysts in the gas-phase oxidative decomposition of chlorinated hydrocarbons. Appl Catal B Environ 19:189–197. doi:10.1016/S0926-3373(98)00078-2

    Article  CAS  Google Scholar 

  • Government Regulation (2004) 220/2004. (VII. 21.). Accessed 7 Mar 2013. http://www.complex.hu/jr/gen/hjegy_doc.cgi?docid=A0400220.KOR

  • IPPC reference document on best available techniques in common waste water and waste gas treatment/management systems in the chemical sector (2002) Applied treatment technology. European Commission, Brussels (EU), pp 124–127

  • Koczka K (2009) Environmental conscious design and industrial application of separation processes. Dissertation, BME, Budapest, Hungary

  • Koczka K, Mizsey P (2010) New area for distillation: wastewater treatment. Per Pol Chem Eng 54:41–45. doi:10.3311/pp.ch.2010-1.06

    Article  CAS  Google Scholar 

  • Köhler A, Hellweg S, Recan E, Hungerbühler K (2007) Input-dependent life-cycle inventory model of industrial wastewater-treatment processes in the chemical sector. Environ Sci Technol 41:5515–5522

    Article  Google Scholar 

  • Lapkin A, Constable D (2008) Green chemistry metrics. Measuring and monitoring sustainable processes. Wiley-VHC, Weinheim

    Book  Google Scholar 

  • Lozowski D (2011) Ecomomic indicators. Chem Eng 118:55–56

    Google Scholar 

  • Major ZS (2008) AOX removal from pharmaceutical process wastewater by air and steam stripping. M.Sc. thesis, BME, Budapest, Hungary

  • Marsili-Libelli S (2010) Modelling and automation of water and wastewater treatment processes. Environ Model Softw 25:613–615. doi:10.1016/j.envsoft.2009.11.002

    Article  Google Scholar 

  • Ministry of Environment Regulation (2004). 28/2004. (XII. 25.). Accessed 7 Mar 2013. http://www.complex.hu/jr/gen/hjegy_doc.cgi?docid=A0400028.KVV

  • Mizsey P (1991) A global approach to the synthesis of entire chemical processes. Dissertation, ETH, Zürich, Switzerland

  • Mizsey P (1994) Waste reduction in the chemical industry—a two level problem. J Hazard Mater 37:1–13. doi:10.1016/0304-3894(94)85028-3

    Article  CAS  Google Scholar 

  • Mizsey P, Toth AJ (2012) Application of the principles of industrial ecology for the treatment of process waste waters with physicochemical tools. Ind Ecol 1:101–126 (in Hungarian)

    Google Scholar 

  • Mizsey P, Koczka K, Tungler A (2008) Treatment of process wastewaters with physicochemical tools. Hung J Chem 114:107–113 (in Hungarian)

    CAS  Google Scholar 

  • Mohammad-Hosseini A, Bakos V, Jobbágy A, Tardy G, Mizsey P, Makó M, Tungler A (2011) Co-treatment and utilisation of liquid pharmaceutical wastes. Per Pol Chem Eng 55:3–10. doi:10.3311/pp.ch.2011-1.01

    Article  Google Scholar 

  • North Ostrobothnia Regional Environment Centre (NOREC) (2000) Examples of waste water and waste gas treatment in the chemical industry in Finland. Report

  • Oguz H, Koch S, Weisweiler W (2000) Comparison of mechanistic models for the catalytic oxidation of trichloroethylene over Cr/Al2O3 and Al–Cr/Porous glass catalysts. Chem Eng Technol 23:395–400. doi:10.1002/(SICI)1521-4125(200005)23:5<395:AID-CEAT395>3.0.CO;2-L

    Article  CAS  Google Scholar 

  • Quan XJ, Wang FP, Zhao QH, Zhao TT, Xiang JX (2009) Air stripping of ammonia in a water-sparged aerocycleone reactor. J Hazard Mater 170:983–988. doi:10.1016/j.hazmat.2009.05.083

    Article  CAS  Google Scholar 

  • Quan X, Ye C, Xiong Y, Xiang J, Wang F (2010) Simultaneous removal of ammonia, P and COD from anaerobically digested piggery wastewater using an integrated process of chemical precipitation and air stripping. J Hazard Mater 178:326–332. doi:10.1016/j.hazmat.2010.01.083

    Article  CAS  Google Scholar 

  • Rivas A, Irizar I, Ayesa E (2008) Model-based optimisation of wastewater treatment plants design. Environ Model Softw 23:435–450. doi:10.1016/j.envsoft.2007.06.009

    Article  Google Scholar 

  • Sackewitz M (1999) Luftstrippverfahren zur Teilstrombehandlung. Betriebserfahrungen auf den Kläranlagen Göttingen und Cuxhaven. Umwelt 29:16–18

    Google Scholar 

  • Saracco G, Genon G (1994) High temperature ammonia stripping and recovery from process liquid wastes. J Hazard Mater 37:191–206. doi:10.1016/0304-3894(94)85048-8

    Article  CAS  Google Scholar 

  • Sattler K (1977) Thermische Trennverfahren. Würzburg, Vogel, p 3.7

    Google Scholar 

  • Seiss M, Gahr A, Niesser R (2001) Improved AOX degradation in UV oxidative wastewater treatment by dialysis with nanofiltration membrane. Water Res 35:3242–3248. doi:10.1016/S0043-1354(01)00028-8

    Article  CAS  Google Scholar 

  • Simoni LD, Lin Y, Brennecke JF, Stadtherr MA (2008) Modeling liquid–liquid equilibrium of ionic liquid systems with NRTL, electrolyte-NRTL, and UNIQUAC. Ind Eng Chem Res 47:256–272. doi:10.1021/je70956j

    Article  CAS  Google Scholar 

  • Toth AJ, Gergely F, Mizsey P (2011) Physicochemical treatment of pharmaceutical wastewater: distillation and membrane processes. Per Pol Chem Eng 55:59–67. doi:10.3311/pp.ch.2011-2.03

    Article  CAS  Google Scholar 

  • Wang Y, Pelkonen M, Kotro M (2010) Treatment of high ammonium-nitrogen wastewater from composting facilities by air stripping and catalytic oxidation. Water Air Soil Pollut 208:259–273. doi:10.1007/s11270-009-0164-z

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial help of KMR—12-1-2012-0066, TAMOP-4-.2.2.A-11/1/KONV-2012-0072 and SH 7/2/14 Swiss-Hungarian Joined project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Toth.

Abbreviations

Abbreviations

€/a:

Euro/annual

AOX:

Adsorbable organically bound halogens

KATOX:

Catalytic oxidation

VOC:

Volatile organic compounds

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toth, A.J., Mizsey, P. Comparison of air and steam stripping: removal of organic halogen compounds from process wastewaters. Int. J. Environ. Sci. Technol. 12, 1321–1330 (2015). https://doi.org/10.1007/s13762-014-0511-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-014-0511-5

Keywords

Navigation