Skip to main content
Log in

Adsorption of ferric ions onto natural feldspar: kinetic modeling and adsorption isotherm

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The removing of ferric ions (Fe3+) from aqueous solution using natural feldspar (NF) has been studied in a batch operation mode. The factors affecting of the sorption equilibrium, such as contact time, initial concentration of the ferric ions (Fe3+), feldspar dosage concentration and temperature, were investigated. The maximum removal is 93 % (approx.) using low-level concentration of Fe3+ ions (30 mg L−1) and high dosage concentration (40 g L−1). The adsorption equilibrium is achieved during the first 90 min. Freundlich model has successfully analyzed the equilibrium of isotherms with R 2 = 1. The adsorption mechanism of aqueous ferric ion on NF follows Freundlich isotherm models (R 2 = 0.997). The capacity (K f) and intensity (1/n) of Freundlich adsorption are 1.70 and 0.621, respectively. The results reveal that the adsorption mechanism of ferric ion on NF is chemisorptions, heterogeneous multilayer and spontaneous in nature (ΔG = −19.778 kJ mol−1). Adsorption reaction kinetic models, such as pseudo-first order and pseudo-second order, and adsorption diffusion model, such as Weber–Morris intraparticle diffusion model, have been used to describe the adsorption rate and mechanism of the ferric ion onto NF surface. Adsorption of ferric ion on the NF has achieved Lagergren pseudo-second-order model (R 2 = 1.0 approx.) more than Lagergren pseudo-first-order model. The kinetic parameters, rate constant and sorption capacities have been calculated. The new information in this study suggests that NF could be used as a novel filtering materials for removing ferric ions from water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aşçı Y, Nurbaş M, SaǵAçıkel Y (2008) A competitive study for the sorption of Cd(II) by K-feldspar and sepiolite as soil component, and the recovery of Cd(II) using rhamnolipidbiosurfactant. J. Environ. Mang. 88:383–392

    Article  Google Scholar 

  • Aksu Z (2001) Equilibrium and kinetic modeling of Cadmium(II) biosorption by C. vulgaris in batch system: effect of temperature. Sep Purif Technol 21:285–294

    Article  CAS  Google Scholar 

  • Al-Anber M (2010) Removal of high-level Fe3+ from aqueous solution using natural inorganic materials: bentonite and quartz. Desalination 250:885–891

    Article  CAS  Google Scholar 

  • Al-Anber M (2011) Thermodynamics approach in the adsorption of heavy metals, Chap 27 Juan Carlos Moreno-Pirajan, Thermodynamics-interaction studies-solids, liquids and gases book: 1st edn, InTech, Book : pp 737–764. ISBN: 978-953-307-318-7

  • Al-Anber MA (2013) Adsorption properties of aqueous ferric ion on the natural cotton fiber: kinetic and thermodynamic studies. Desalination Water Treat 1–12, published on line 07 May 2013, doi:10.1080/19443994.2013.795875

  • Al-Anber Z, Al-Anber M (2008a) Adsorption of ferric ions from aqueous solution by olive cake: thermodynamic and kinetic studies. J Mex Chem Soc 52:108–115

    CAS  Google Scholar 

  • Al-Anber M, Al-Anber Z (2008b) Utilization of natural zeolite as ion-exchange and sorbent material in the removal of iron. Desalination 225:70–81

    Article  CAS  Google Scholar 

  • Al-Anber Z, Al-Anber M, Matouq M, Al-Ayed O (2011) Defatted jojoba for the removal of methylene blue from aqueous solution: thermodynamic and kinetic studies. Desalination 276:169–174

    Article  CAS  Google Scholar 

  • Al-Anber MA, Al-Anber ZA, Al-Momani I, Al-Momani F, Abu-Salem Q (2013) The performance of defatted jojoba seeds for the removal of toxic high-concentration of the aqueous ferric ion. Desalination Water Treatment, doi:10.1080/19443994.2013.784878

  • AL-Ghezawi N, Al-Anber MA, Al-Anber ZA, El-Hasan T, Al-Momani I (2010) Decontamination and adsorption modeling of aqueous Pb2+ and Co2+ ions using natural inorganic materials: tripoli (NT) and bentonite (NB). Desalination Water Treat 24:336–343

    Article  CAS  Google Scholar 

  • Apodaca LE (2008) Feldspar and nephelinesyenitesyenite. Minerals Yearbook, Feldspar [Advance release]

  • Appegate LE (1984) Membrane separation processes. Chem Eng 91:64

    Google Scholar 

  • Awan A, Qai IA, Khalid I (2003) Removal of heavy metals through adsorption using sand. J Environ Sci 15:413–416

    CAS  Google Scholar 

  • Bernardo E, Doyle J, Hampshire S (2008) Sintered feldspar glass–ceramics and glass–ceramic matrix composites. Ceram Intern 34:2037–2042

    Article  CAS  Google Scholar 

  • Bhattacharyya KG, Gupta SS (2006) Pb(II) uptake by kaolinite and montmorillonite in aqueous medium:influence of acid activation of the clays. Colloids and Surfaces A: Physicochem. Eng Asp 277:191–200

    Article  CAS  Google Scholar 

  • Boyd GE, Adamson AW, Myers LS (1947) The exchange adsorption of ion from aqueous solution by organic zeolites, II, kinetics. J Am Chem Soc 69(11):2836–2848

    Article  CAS  Google Scholar 

  • Brezonik PL (1974) Analysis and speciation of the trace metals in water supply, aqueous environmental chemistry of the metals. In: Rubin AJ (ed) Ann Arbor Science Publishers, Ann Arbor, p 167–191

  • Burke A, Yilmaz E, Hasirci N, Yilmaz O (2002) Iron(III) ion removal from solution through adsorption on chitosan. J Appl Polym Sci 84:1185–1192

    Article  CAS  Google Scholar 

  • Disediakan Oleh, Ariffin KS (2003) Feldspathic Minerals Feldspar. EBS 425/3—Mineral Perindustrian, 6:1–16

  • Domenico PA, Schwartz FW (1990) Physical and chemical hydrogeology, 1st edn. Wiley, New York, pp 1–494

    Google Scholar 

  • Donald LS (1998). Kinetics of sorption/release reactions on natural particles. Environmental soil chemistry [M]. Academic Press, San Diego pp 1–352

  • Edwin Vasu A (2008) Adsorption of Ni(II), Cu(II) and Fe(III) from aqueous solution using activated carbon. Eur J Chem 5:1–9

    Google Scholar 

  • Fraga CG (2005) Essential and toxicity elements in human health. Molecular aspect of medicine 26:235–244

    Article  CAS  Google Scholar 

  • Geselbarcht J (1996) Micro Filtration/Reverse Osmosis Pilot Trials for Livermore, California, Advanced Water Reclamation. Water Reuse Conference Proceedings AWWA, p 187

  • Ho YS (2004) Kinetic modeling and equilibrium studies during cadmium biosorption by dead Sargassumsp biomass by Cruz CCV, da Costa, ACA Henriques CA, Luna AS (2004) Biores. Technol 93(3):321–324

    CAS  Google Scholar 

  • Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34(5):451–465

    Article  CAS  Google Scholar 

  • Kannan N, Kumar RA (2003) Suitability of various indigenously prepared activated carbons for the adsorption of mercury(II) ions. Toxicol Environ Chem 84(14):7–19

    Article  Google Scholar 

  • Kannan N, Meenakshisundaram M (2002) Adsorption of Congo red on various activated carbons. a comparative study. Water Air Soil Poll 138:289–305

    Article  CAS  Google Scholar 

  • Kannan N, Xavier A (2001) Studies on the removal of formic acid by flyash-wood carbon blend. Toxicol Environ Chem 19:859–863

    Google Scholar 

  • Karthikeyan G, Andal NM, Anbalagan K (2005) Adsorption studies of iron(III) on chitin. J Chem Sci 117(6):663–672

    Article  CAS  Google Scholar 

  • Kinniburgh DG (1985) Isotherm. A computer program for analyzing adsorption data. Report WD/ST/85/02. Version 2.2. British Geological Survey, Wallingford. England, pp 65–92

  • Kinniburgh DG (1986) General purpose adsorption isotherms. Environ Sci Technol 20:895–904

    Article  CAS  Google Scholar 

  • Lagergren S (1898) Zurtheorie der sogenannten adsorption gelösterstoffe. Kungliga. SvenskaVetenskapsakademiens. Handlingar 24(4):1–39

  • Lakshminarayanan Rao KC, Krishniah K, Ashutosh A (1994) Color removal from dye stuff industry effluent using activated carbon. Indian J Chem Technol 1:13–19

    Google Scholar 

  • Liu YH, Wan XB, Li AH, Dong YY (2007) Bentonite modified and its purification of Zn2+ in water. Chem Bioeng 24:34–35

    Google Scholar 

  • Michael R, Mark VD, Sandefur KD, Durham KA (2006) Paint. Kirk-Othmer Encyclopedia of Chemical Technology, 5th edn. 18: 54–76

  • Mouflih M, Aklil A, Jahroud N, Gourai M, Sebti S (2006) Removal of lead from aqueous solution by natural phosphate. Hydrometallurgy 81:219–225

    Article  CAS  Google Scholar 

  • Murray BM (1994) Environmental chemistry of soils [M]. Oxford University press, USA, USA, pp 1–416

    Google Scholar 

  • Nassar MM, Ewida KT, Ebrahiem EE, Magdy YH, Mheaedi MH (2004) Adsorption of iron and manganese ions using low-cost materials as adsorbents. Adsorpt Sci Technol 22:25–37

    Article  CAS  Google Scholar 

  • Natural Resources Authority, Jordan, Report on Feldspar (2006) http://www.nra.gov.jo/images/stories/pdf_files/ Feldspar

  • Naushad Mu, AL-Othman ZA, Islam M (2013) Adsorption of cadmium ion using a new composite cation-exchanger polyaniline Sn(IV) silicate: kinetics, thermodynamic and isotherm studies. Int J Environ Sci Technol 10:567–578

    Article  CAS  Google Scholar 

  • Nitzsche O, Vereecken H (2002) Modelling sorption and exchange processes in column experiments and large scale field studies. Mine Water Environ 21:15–23

    Article  Google Scholar 

  • Pan JF, Lu J (2008) Experimental study on adsorbing the Pb2+, Ni2+, Cd2+ from wastewater with natural Ca-bentonite and modified Ca-bentonite. China Min Mag 9:35–138

    Google Scholar 

  • Reddi LN, Inyang HI (2000) Geo-environmental engineering principles and applications, Marcel Decker Inc., New York, p 492

  • Sengupta AK, Clifford D (1986) Important process variables in chromate ion exchange. Environ Sci Technol 20:149

    Article  CAS  Google Scholar 

  • Siddique BA, Sharma PP, Mohamad S (1999) Adsorption studies on phosphate treated sawdust: separation of Cr(VI) from Zn(II), Ni(II), Cu(II) and their removal and recovery from electroplating waste. Ind J Environ Prot 19(11):846–852

    Google Scholar 

  • Tinschert J, Zwez D, Marx R, Anusavice KJ (2000) Structural reliability of alumina-, feldspar-, leucite-, mica- and zirconia-based ceramics. J Dent 28:529–535

    Article  CAS  Google Scholar 

  • Wan WS, Ghani SA, Kamari A (2005) Adsorption behavior of Fe(II) and Fe(III) ions in aqueous solution on chitosan and cross-linked chitosan beads. Bioresour Technol 96:443–450

    Article  Google Scholar 

  • Wang ZA, Zhu YM, Wei DZ, Dai SJ (2006) Research on Adsorption of Zn2+ from Wastewater by Ca-Bentonite. Non-ferr Min Metall 22:45–47

    Google Scholar 

  • Weber JWJ, Digiano FO (1996) Process dynamics in environmental system; environmental science and technology series. New York, Wiley, pp 89–94

    Google Scholar 

  • Wikipedia, http://en.wikipedia.org/wiki/Feldspar

  • Yeddou N, Bensmaili A (2007) Equilibrium and kinetic of iron adsorption by eggshells in a batch system: effect of temperature. Desalination 206:127–134

    Article  CAS  Google Scholar 

  • Yu B, Zhang Y, Shukla A, Shukla SS, Dorris KL (2000) The removal heavy metal from aqueous solution by sawdust adsorption-removal of copper. J Hazard Mater B80:33–42

    Article  Google Scholar 

  • Zamani A, Shokri R, Yaftian M, Parizanganeh A (2013) Adsorption of lead, zinc and cadmium ions from contaminated water onto Peganum harmala seeds as biosorbent. Int J Environ Sci Technol 10:93–102

    Article  CAS  Google Scholar 

  • Zamzow MJ, Murphy JE (1992) Removal of metal cations from water using zeolite. Sep Sci Technol 14:1969

    Article  Google Scholar 

  • Zeldowitsch J (1934) Über den Mechanismus der katalytischen Oxydation von CO an MnO2. Acta Physicochim URSS 1:364–449

    Google Scholar 

Download references

Acknowledgments

MA would like to thank Mutah University (Jordan) and University of Hail (Saudi Arabia) for the supporting to do this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Al-Anber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Anber, M.A. Adsorption of ferric ions onto natural feldspar: kinetic modeling and adsorption isotherm. Int. J. Environ. Sci. Technol. 12, 139–150 (2015). https://doi.org/10.1007/s13762-013-0410-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-013-0410-1

Keywords

Navigation