Skip to main content

Advertisement

Log in

Interactions between algicidal bacteria and the cyanobacterium Microcystis aeruginosa: lytic characteristics and physiological responses in the cyanobacteria

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Application of algicidal bacteria is a promising and environmentally friendly way to control cyanobacterial blooms. Lytic effects of the algicidal bacteria on Microcystis aeruginosa have been observed, but the interactions between algicidal bacteria and the cyanobacteria are still elusive. An algicidal bacterium Bacillus sp. B50 isolated from Lake Donghu showed a highly lytic efficiency on M. aeruginosa NIES-843 through heat-resistant extracellular substances from strain B50. The cell density of strain B50 could be maintained at high levels during the lytic process in bacteria–Microcystis system with inoculation densities of 1.9 × 106 and 1.9 × 107 cfu/mL, resulting in the death of M. aeruginosa NIES-843. However, the population dynamics of strain B50 was a bell-shaped curve at low inoculation densities and no lytic effect could be observed. Results of physiological responses suggested that the lytic efficiency may be mediated through inhibition of metabolism and production of reactive oxygen species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson DM (1997) Turning back the harmful red tides. Nature 38:513–514

    Article  Google Scholar 

  • Aro EM, Virgin I, Andersson B (1993) Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta 1143:113–134

    Article  CAS  Google Scholar 

  • Bustin SA (2000) Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25:169–193

    Article  CAS  Google Scholar 

  • Carmichael WW (1995) Toxic Microcystis in the environment. In: Watanabe MF, Harada K, Carmichael WW, Fujiki H (eds) Toxic Microcystis. CRC Press, New York, pp 1–12

    Google Scholar 

  • Fraleigh PC, Burnham JC (1988) Myxococcus predation on cyanobacterial nutrient effects. Limnol Oceanogr 33:476–483

    Article  CAS  Google Scholar 

  • Gamer J, Bujard H, Bukau B (1992) Physical interaction between heat shock proteins DnaK, DnaJ, and GrpE and the bacterial heat shock transcription factor σ32. Cell 69:833–842

    Article  CAS  Google Scholar 

  • Griffiths HR (2005) Chemical modifications of biomolecules by oxidants. Handb Environ Chem 2:33–62

    CAS  Google Scholar 

  • Hong Y, Hu HY, Li FM (2008) Physiological and biochemical effects of allelochemical ethyl 2-methyl acetoacetate (EMA) on cyanobacterium Microcystis aeruginosa. Ecotox Environ Safe 71:527–534

    Article  CAS  Google Scholar 

  • Ichimura T (1979) Media for freshwater cyanobacteria. In: Nishizawa K, Chihara M (eds) Methods in phycology. Kyouritsu Shuppan, Tokyo, pp 295–296

    Google Scholar 

  • Juttner F, Luthi H (2008) Topology and enhanced toxicity of bound microcystins in Microcystis PCC 7806. Toxicon 51:388–397

    Article  CAS  Google Scholar 

  • Kang YH, Kim JD, Kim BH, Kong DS, Han MS (2005) Isolation and characterization of a bio-agent antagonistic to diatom, Stephanodiscus hantzschii. J Appl Microbiol 98:1030–1038

    Article  CAS  Google Scholar 

  • Kennelly PJ, Potts M (1999) Life among the primitives: protein O-phosphatases in prokaryotes. Front Biosc 4:372–385

    Article  Google Scholar 

  • Kim B, Hwang S, Kim Y, Hwang S, Takamura N, Han M (2007) Effects of biological control agents on nuisance cyanobacterial and diatom blooms in freshwater systems. Microbes Environ 22:52–58

    Article  Google Scholar 

  • Kodani S, Akiko I, Mitsutani A, Murakami M (2002) Isolation and identification of the antialgal compound, harmane (1-methyl-β-carboline), produced by the algicidal bacterium, Pseudomonas sp. K44-1. J Appl Phycol 14:109–114

    Article  CAS  Google Scholar 

  • Kurmayer R, Kutzenberger T (2003) Application of real-time PCR for quantification of microcystin genotypes in a population of the toxic cyanobacterium Microcystis sp. Appl Environ Microbiol 69:6723–6730

    Article  CAS  Google Scholar 

  • Latifi A, Ruiz M, Jeanjean R, Zhang CC (2007) PrxQ-A, a member of the peroxiredoxin Q family, plays a major role in defense against oxidative stress in the cyanobacterium Anabaena sp. strain PCC7120. Free Radic Bio Med 42:424–431

    Article  CAS  Google Scholar 

  • Lee YK, Ahn CY, Kim HS, Oh HM (2010) Cyanobactericidal effect of Rhodococcus sp. isolated from eutrophic lake on Microcystis sp. Biotechnol Lett 32:1673–1678

    Article  CAS  Google Scholar 

  • Lin S, Wu Z, Yu G, Zhu M, Yu B, Li R (2010) Genetic diversity and molecular phylogeny of Planktothrix (Oscillatoriales, cyanobacteria) strains from China. Harmful Algae 9:87–97

    Article  Google Scholar 

  • Manage PM, Kawabata Z, Nakano S (2000) Algicidal effect of the bacterium Alcaligenes denitrificans on Microcystis spp. Aquat Microb Ecol 22:111–117

    Article  Google Scholar 

  • Mayali X, Doucette GJ (2002) Microbial community interactions and population dynamics of an algicidal bacterium active against Karenia brevis (Dinophyceae). Harmful Algae 1:277–293

    Article  Google Scholar 

  • Mazouni K, Domain F, Cassier-Chauvat C, Chauvat F (2004) Molecular analysis of the key cytokinetic components of cyanobacteria: FtsZ, ZipN and MinCDE. Mol Microbiol 52:1145–1158

    Article  CAS  Google Scholar 

  • Mu RM, Fan ZQ, Pei HY, Yuan XL, Liu SX, Wang XR (2007) Isolation and algae-lysing characteristics of the algicidal bacterium B5. J Environ Sci (China) 19:1336–1340

    Article  CAS  Google Scholar 

  • Nübel U, Garcia-Pichel F, Muyzer G (1997) PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl Environ Microbiol 63:3327–3332

    Google Scholar 

  • Pan G, Zhang MM, Chen H, Zou H, Yan H (2006) Removal of cyanobacterial blooms in Taihu Lake using local soils I. Equilibrium and kinetic screening on the flocculation of Microcystis aeruginosa using commercially available clays and minerals. Environ Pollut 141:195–200

    Article  CAS  Google Scholar 

  • Pearson LA, Neilan BA (2008) The molecular genetics of cyanobacterial toxicity as a basis for monitoring water quality and public health risk. Curr Opin Biotech 19:281–288

    Article  CAS  Google Scholar 

  • Richards FA, Thompson TG (1952) The estimation and characterization of plankton populations by pigment analyses. II. A spectrophotometric method for the estimation of plankton pigments. J Marine Res 11:156–172

    CAS  Google Scholar 

  • Shao J, Wu Z, Yu G, Pen X, Li R (2009) Allelopathic mechanism of pyrogallol to Microcystis aeruginosa PCC7806 (cyanobacteria): from views of gene expression and antioxidant system. Chemosphere 75:924–928

    Article  CAS  Google Scholar 

  • Song L, Chen W, Peng L, Wan N, Gan N, Zhang X (2007) Distribution and bioaccumulation of microcystins in water columns: a systematic investigation into the environmental fate and the risks associated with microcystins in Meiliang Bay, Lake Taihu. Water Res 41:2853–2864

    Article  CAS  Google Scholar 

  • Swarnamukhi PL, Sharma SK, Bajaj P, Surolia N, Surolia A, Suguna K (2006) Crystal structure of dimeric FabZ of Plasmodium falciparum reveals conformational switching to active hexamers by peptide flips. FEBS Lett 580:2653–2660

    Article  CAS  Google Scholar 

  • Tucker S, Pollard P (2005) Identification of cyanophage Ma-LBP and infection of the cyanobacterium Microcystis aeruginosa from an Australian subtropical lake by the virus. Appl Environ Microbiol 71:629–635

    Article  CAS  Google Scholar 

  • Urbach E, Robertsin D, Chisholm S (1992) Multiple evolutionary origins of prochlorophytes within the cyanobacterial radiation. Nature 355:267–270

    Article  CAS  Google Scholar 

  • Vickerman MM, Brossard KA, Funk DB, Jesionowski AM, Gill SR (2007) Phylogenetic analysis of bacterial and archaeal species in symptomatic and asymptomatic endodontic infections. J Med Microbiol 56:110–118

    Article  CAS  Google Scholar 

  • Wang Q, Su M, Zhu W, Li X, Jia Y, Guo P, Chen Z, Jiang W, Tian X (2010) Growth inhibition of Microcystis aeruginosa by white-rot fungus Lopharia spadicea. Water Sci Technol 62:317–323

    Article  CAS  Google Scholar 

  • Welker M, von Döhren H (2006) Cyanobacterial peptides—nature’s own combinatorial biosynthesis. FEMS Microbiol Rev 30:530–563

    Article  CAS  Google Scholar 

  • Yang CY, Zhou SW, Xia CH, Liu YD (2009) The effect of microcystin-RR on the growth and physiological characteristics of denitrifying bacteria. Chin J Environ Pollut Control 31:7–10

    Google Scholar 

Download references

Acknowledgments

The research was supported by National Natural Science Foundation of China (No. 21107024), Hunan Provincial Natural Science Foundation of China (10JJ6045), and the Foundation of Furong Scholar project of Hunan Province. Professor Joe Lepo (University of West Florida) provided language assistance and useful suggestions in an early draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shao, J., Jiang, Y., Wang, Z. et al. Interactions between algicidal bacteria and the cyanobacterium Microcystis aeruginosa: lytic characteristics and physiological responses in the cyanobacteria. Int. J. Environ. Sci. Technol. 11, 469–476 (2014). https://doi.org/10.1007/s13762-013-0205-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-013-0205-4

Keywords

Navigation