Skip to main content
Log in

Experimental analysis of machine learning methods for credit score classification

  • Review
  • Published:
Progress in Artificial Intelligence Aims and scope Submit manuscript

Abstract

Credit scoring concerns with emerging empirical model to assist the financial institutions for financial decision-making process. Credit risk analysis plays a vital role for decision-making process; statistical and machine learning approaches are utilized to estimate the risk associated with a credit applicant. Enhancing the performance of credit scoring model, particularly toward non-trustworthy “or non-creditworthy” group, may result incredible effect for financial institution. However, credit scoring data may have excess and unimportant data and features which degrades the performance of model. So, selection of important features (or reduction in irrelevant and redundant features) may play the key role for improving the effectiveness and reducing the complexity of the model. This study presents a experimental results analysis of various combinations of feature selection approaches with various classification approaches and impact of feature selection approaches. For experimental results analysis, nine feature selection and sixteen classification state-of-the-art approaches have been applied on seven benched marked credit scoring datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abdou, H.A., Pointon, J.: Credit scoring, statistical techniques and evaluation criteria: a review of the literature. Intell. Syst. Account. Finance Manag. 18(2–3), 59–88 (2011)

    Article  Google Scholar 

  2. Abellán, J., Castellano, J.G.: A comparative study on base classifiers in ensemble methods for credit scoring. Expert Syst. Appl. 73, 1–10 (2017)

    Article  Google Scholar 

  3. Ala’raj, M., Abbod, M.F.: Classifiers consensus system approach for credit scoring. Knowl. Based Syst. 104, 89–105 (2016)

    Article  Google Scholar 

  4. Ala’raj, M., Abbod, M.F.: A new hybrid ensemble credit scoring model based on classifiers consensus system approach. Expert Syst. Appl. 64, 36–55 (2016)

    Article  Google Scholar 

  5. Altman, N.S.: An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 46(3), 175–185 (1992)

    MathSciNet  Google Scholar 

  6. Atiya, A.F.: Bankruptcy prediction for credit risk using neural networks: a survey and new results. IEEE Trans. Neural Netw. 12(4), 929–935 (2001)

    Article  Google Scholar 

  7. Bashir, S., Qamar, U., Khan, F.H.: IntelliHealth: a medical decision support application using a novel weighted multi-layer classifier ensemble framework. J. Biomed. Inform. 59, 185–200 (2016)

    Article  Google Scholar 

  8. Bashir, S., Qamar, U., Khan, F.H., Naseem, L.: HMV: a medical decision support framework using multi-layer classifiers for disease prediction. J. Comput. Sci. 13, 10–25 (2016)

    Article  Google Scholar 

  9. Bequé, A., Lessmann, S.: Extreme learning machines for credit scoring: an empirical evaluation. Expert Syst. Appl. 86, 42–53 (2017)

    Article  Google Scholar 

  10. Bradley, P.S., Mangasarian, O.L.: Feature selection via concave minimization and support vector machines. ICML 98, 82–90 (1998)

    Google Scholar 

  11. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  12. Broomhead, D.S., Lowe, D.: Radial basis functions, multi-variable functional interpolation and adaptive networks. Technical report. Royal Signals and Radar Establishment Malvern (United Kingdom) (1988)

  13. Cai, D., Zhang, C., He, X.: Unsupervised feature selection for multi-cluster data. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 333–342. ACM (2010)

  14. Chakravarthy, H., Bachan, P., Roshini, P., Ch, R.K.: Bio inspired approach as a problem solving technique (2012)

  15. Chen, W., Ma, C., Ma, L.: Mining the customer credit using hybrid support vector machine technique. Expert Syst. Appl. 36(4), 7611–7616 (2009)

    Article  Google Scholar 

  16. Chi, B.W., Hsu, C.C.: A hybrid approach to integrate genetic algorithm into dual scoring model in enhancing the performance of credit scoring model. Expert Syst. Appl. 39(3), 2650–2661 (2012)

    Article  Google Scholar 

  17. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    Article  MATH  Google Scholar 

  18. Desai, V.S., Crook, J.N., Overstreet, G.A., Jr.: A comparison of neural networks and linear scoring models in the credit union environment. Eur. J. Oper. Res. 95(1), 24–37 (1996)

    Article  MATH  Google Scholar 

  19. Dua, D., Graff, C.: UCI machine learning repository. https://archive.ics.uci.edu/ml/machine-learning-databases/credit-screening/ (2017)

  20. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, Hoboken (2012)

    MATH  Google Scholar 

  21. Edla, D.R., Tripathi, D., Cheruku, R., Kuppili, V.: An efficient multi-layer ensemble framework with BPSOGSA-based feature selection for credit scoring data analysis. Arab. J. Sci. Eng. 43(12), 6909–6928 (2018)

    Article  Google Scholar 

  22. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugen. 7(2), 179–188 (1936)

    Article  Google Scholar 

  23. Frank, E., Witten, I.H.: Generating accurate rule sets without global optimization (1998)

  24. Friedman, J., Hastie, T., Tibshirani, R.: The Elements of Statistical Learning. Springer Series in Statistics, vol. 1. Springer, New York (2001)

    MATH  Google Scholar 

  25. Fulwari, A.: Issues of housing finance in urban India a symptomatic study. Ph.D. thesis (2013)

  26. Gorzałczany, M.B., Rudziński, F.: A multi-objective genetic optimization for fast, fuzzy rule-based credit classification with balanced accuracy and interpretability. Appl. Soft Comput. 40, 206–220 (2016)

    Article  Google Scholar 

  27. Green, S., Salkind, N.: Using SPSS for Windows and Macintosh: Analyzing and Understanding Data. Prentice Hall, Uppersaddle River (2010)

    Google Scholar 

  28. Guo, S., He, H., Huang, X.: A multi-stage self-adaptive classifier ensemble model with application in credit scoring. IEEE Access 7, 78549–78559 (2019)

    Article  Google Scholar 

  29. Hall, M.A.: Correlation-based feature selection for machine learning (1999)

  30. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  31. Hayashi, Y.: Application of a rule extraction algorithm family based on the Re-RX algorithm to financial credit risk assessment from a pareto optimal perspective. Oper. Res. Perspect. 3, 32–42 (2016)

    MathSciNet  Google Scholar 

  32. Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall, Upper Saddle River (1994)

    MATH  Google Scholar 

  33. Haykin, S.S.: Neural Networks: A Comprehensive Foundation. Tsinghua University Press, Beijing (2001)

    MATH  Google Scholar 

  34. He, X., Cai, D., Niyogi, P.: Laplacian score for feature selection. In: Advances in Neural Information Processing Systems, pp. 507–514 (2006)

  35. Hens, A.B., Tiwari, M.K.: Computational time reduction for credit scoring: an integrated approach based on support vector machine and stratified sampling method. Expert Syst. Appl. 39(8), 6774–6781 (2012)

    Article  Google Scholar 

  36. Hoffmann, F., Baesens, B., Mues, C., Van Gestel, T., Vanthienen, J.: Inferring descriptive and approximate fuzzy rules for credit scoring using evolutionary algorithms. Eur. J. Oper. Res. 177(1), 540–555 (2007)

    Article  MATH  Google Scholar 

  37. Hu, Q., Yu, D., Liu, J., Wu, C.: Neighborhood rough set based heterogeneous feature subset selection. Inf. Sci. 178(18), 3577–3594 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Hu, Z., Bao, Y., Xiong, T., Chiong, R.: Hybrid filter-wrapper feature selection for short-term load forecasting. Eng. Appl. Artif. Intell. 40, 17–27 (2015)

    Article  Google Scholar 

  39. Huang, C.L., Chen, M.C., Wang, C.J.: Credit scoring with a data mining approach based on support vector machines. Expert Syst. Appl. 33(4), 847–856 (2007)

    Article  Google Scholar 

  40. Huang, C.L., Dun, J.F.: A distributed PSO-SVM hybrid system with feature selection and parameter optimization. Appl. Soft Comput. 8(4), 1381–1391 (2008)

    Article  Google Scholar 

  41. Huang, C.L., Wang, C.J.: A GA-based feature selection and parameters optimization for support vector machines. Expert Syst. Appl. 31(2), 231–240 (2006)

    Article  Google Scholar 

  42. Huang, G.B., Chen, L.: Convex incremental extreme learning machine. Neurocomputing 70(16), 3056–3062 (2007)

    Article  Google Scholar 

  43. Huang, G.B., Chen, L.: Enhanced random search based incremental extreme learning machine. Neurocomputing 71(16), 3460–3468 (2008)

    Article  Google Scholar 

  44. Huang, G.B., Wang, D.H., Lan, Y.: Extreme learning machines: a survey. Int. J. Mach. Learn. Cybernet. 2(2), 107–122 (2011)

    Article  Google Scholar 

  45. Huang, G.B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 42(2), 513–529 (2012)

    Article  Google Scholar 

  46. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: a new learning scheme of feedforward neural networks. In: Proceedings of 2004 IEEE International Joint Conference on of Neural Networks, vol. 2, pp. 985–990. IEEE (2004)

  47. Jimbo Santana, P., Villa Monte, A., Rucci, E., Lanzarini, L.C., Fernández Bariviera, A.: Analysis of methods for generating classification rules applicable to credit risk. J. Comput. Sci. Technol. 17, 20–28 (2017)

    Google Scholar 

  48. John, G.H., Langley, P.: Estimating continuous distributions in bayesian classifiers. In: Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, pp. 338–345. Morgan Kaufmann Publishers Inc. (1995)

  49. Kala, R., Vazirani, H., Khanwalkar, N., Bhattacharya, M.: Evolutionary radial basis function network for classificatory problems. IJCSA 7(4), 34–49 (2010)

    Google Scholar 

  50. Kang, S., Cho, S., Kang, P.: Multi-class classification via heterogeneous ensemble of one-class classifiers. Eng. Appl. Artif. Intell. 43, 35–43 (2015)

    Article  Google Scholar 

  51. Kaynak, C., Alpaydin, E.: Multistage cascading of multiple classifiers: one man’s noise is another man’s data. In: ICML, pp. 455–462 (2000)

  52. Kim, M.J., Kang, D.K., Kim, H.B.: Geometric mean based boosting algorithm with over-sampling to resolve data imbalance problem for bankruptcy prediction. Expert Syst. Appl. 42(3), 1074–1082 (2015)

    Article  Google Scholar 

  53. Kira, K., Rendell, L.A.: The feature selection problem: traditional methods and a new algorithm. Aaai 2, 129–134 (1992)

    Google Scholar 

  54. Kira, K., Rendell, L.A.: A practical approach to feature selection. In: Machine Learning Proceedings 1992, pp. 249–256. Elsevier (1992)

  55. Kuppili, V., Tripathi, D., Reddy Edla, D.: Credit score classification using spiking extreme learning machine. Comput. Intell. 36(2), 402–426 (2020)

    Article  Google Scholar 

  56. Lahsasna, A., Ainon, R.N., Teh, Y.W.: Credit scoring models using soft computing methods: a survey. Int. Arab J. Inf. Technol. 7(2), 115–123 (2010)

    Google Scholar 

  57. Lang, K.J.: A time-delay neural network architecture for speech recognition. Technical Report (1988)

  58. Le Cessie, S., Van Houwelingen, J.C.: Ridge estimators in logistic regression. J. Appl. Stat. 41, 191–201 (1992)

    Article  MATH  Google Scholar 

  59. Lee, T.S., Chen, I.F.: A two-stage hybrid credit scoring model using artificial neural networks and multivariate adaptive regression splines. Expert Syst. Appl. 28(4), 743–752 (2005)

    Article  Google Scholar 

  60. Lee, T.S., Chiu, C.C., Lu, C.J., Chen, I.F.: Credit scoring using the hybrid neural discriminant technique. Expert Syst. Appl. 23(3), 245–254 (2002)

    Article  Google Scholar 

  61. Li, S.T., Shiue, W., Huang, M.H.: The evaluation of consumer loans using support vector machines. Expert Syst. Appl. 30(4), 772–782 (2006)

    Article  Google Scholar 

  62. Liang, D., Tsai, C.F., Dai, A.J., Eberle, W.: A novel classifier ensemble approach for financial distress prediction. Knowl. Inf. Syst. 54, 437–462 (2017)

    Article  Google Scholar 

  63. Liang, D., Tsai, C.F., Wu, H.T.: The effect of feature selection on financial distress prediction. Knowl.-Based Syst. 73, 289–297 (2015)

    Article  Google Scholar 

  64. Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/ml

  65. Lin, W.Y., Hu, Y.H., Tsai, C.F.: Machine learning in financial crisis prediction: a survey. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 42(4), 421–436 (2012)

    Article  Google Scholar 

  66. Liu, Y., Wang, G., Chen, H., Dong, H., Zhu, X., Wang, S.: An improved particle swarm optimization for feature selection. J. Bionic Eng. 8(2), 191–200 (2011)

    Article  Google Scholar 

  67. Louzada, F., Ara, A., Fernandes, G.B.: Classification methods applied to credit scoring: systematic review and overall comparison. Surv. Oper. Res. Manag. Sci. 21, 117–134 (2016)

    MathSciNet  Google Scholar 

  68. Martens, D., Baesens, B., Van Gestel, T., Vanthienen, J.: Comprehensible credit scoring models using rule extraction from support vector machines. Eur. J. Oper. Res. 183(3), 1466–1476 (2007)

    Article  MATH  Google Scholar 

  69. Martens, D., De Backer, M., Haesen, R., Vanthienen, J., Snoeck, M., Baesens, B.: Classification with ant colony optimization. IEEE Trans. Evol. Comput. 11(5), 651–665 (2007)

    Article  Google Scholar 

  70. Mester, L.J., et al.: What’s the point of credit scoring? Bus. Rev. 3(Sep/Oct), 3–16 (1997)

    Google Scholar 

  71. Moretti, F., Pizzuti, S., Panzieri, S., Annunziato, M.: Urban traffic flow forecasting through statistical and neural network bagging ensemble hybrid modeling. Neurocomputing 167, 3–7 (2015)

    Article  Google Scholar 

  72. Moro, S., Cortez, P., Rita, P.: A data-driven approach to predict the success of bank telemarketing. Decis. Support Syst. 62, 22–31 (2014)

    Article  Google Scholar 

  73. Nanni, L., Lumini, A.: An experimental comparison of ensemble of classifiers for bankruptcy prediction and credit scoring. Expert Syst. Appl. 36(2), 3028–3033 (2009)

    Article  Google Scholar 

  74. Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimization: Algorithms and Their Computational Complexity. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  75. Oreski, S., Oreski, G.: Genetic algorithm-based heuristic for feature selection in credit risk assessment. Expert Syst. Appl. 41(4), 2052–2064 (2014)

    Article  Google Scholar 

  76. Paleologo, G., Elisseeff, A., Antonini, G.: Subagging for credit scoring models. Eur. J. Oper. Res. 201(2), 490–499 (2010)

    Article  Google Scholar 

  77. Parvin, H., MirnabiBaboli, M., Alinejad-Rokny, H.: Proposing a classifier ensemble framework based on classifier selection and decision tree. Eng. Appl. Artif. Intell. 37, 34–42 (2015)

    Article  Google Scholar 

  78. Ping, Y., Yongheng, L.: Neighborhood rough set and SVM based hybrid credit scoring classifier. Expert Syst. Appl. 38(9), 11300–11304 (2011)

    Article  Google Scholar 

  79. Platt, J.C.: 12 fast training of support vector machines using sequential minimal optimization. In: Advances in Kernel Methods, pp. 185–208 (1999)

  80. Polat, K., Güneş, S., Arslan, A.: A cascade learning system for classification of diabetes disease: generalized discriminant analysis and least square support vector machine. Expert Syst. Appl. 34(1), 482–487 (2008)

    Article  Google Scholar 

  81. Qualitative bankruptcy data set. https://archive.ics.uci.edu/ml/machine-learning-databases/00281/. Accessed 1 Oct 2019

  82. Rifkin, R.M.: Everything old is new again: a fresh look at historical approaches in machine learning. Ph.D. thesis, Massachusetts Institute of Technology (2002)

  83. Rodriguez, J.J., Kuncheva, L.I., Alonso, C.J.: Rotation forest: a new classifier ensemble method. IEEE Trans. Pattern Anal. Mach. Intell. 28(10), 1619–1630 (2006)

    Article  Google Scholar 

  84. Roffo, G., Melzi, S.: Features selection via eigenvector centrality. In: Proceedings of New Frontiers in Mining Complex Patterns (NFMCP 2016) (Oct 2016) (2016)

  85. Roffo, G., Melzi, S.: Ranking to learn. In: International Workshop on New Frontiers in Mining Complex Patterns, pp. 19–35. Springer (2016)

  86. Roffo, G., Melzi, S., Castellani, U., Vinciarelli, A.: Infinite latent feature selection: a probabilistic latent graph-based ranking approach. In: Computer Vision and Pattern Recognition (2017)

  87. Rokach, L., Maimon, O.Z.: Data Mining with Decision Trees: Theory and Applications, vol. 69

  88. Rosenblatt, F.: Principles of neurodynamics. Perceptrons and the theory of brain mechanisms. Technical report, Cornell Aeronautical Lab Inc., Buffalo, NY (1961)

  89. Rudziński, F.: A multi-objective genetic optimization of interpretability-oriented fuzzy rule-based classifiers. Appl. Soft Comput. 38, 118–133 (2016)

    Article  Google Scholar 

  90. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. Technical report, California Univ San Diego La Jolla Inst for Cognitive Science (1985)

  91. Saha, M.: Credit cards issued. http://www.thehindu.com/business/Industry/Credit-cards-issued-touch-24.5-million/article14378386.ece (2017). Accessed 1 Oct 2019

  92. Schölkopf, B., Tsuda, K., Vert, J.P., Istrail, D.S., Pevzner, P.A., Waterman, M.S., et al.: Kernel Methods in Computational Biology. MIT Press, Cambridge (2004)

    Book  Google Scholar 

  93. Senliol, B., Gulgezen, G., Yu, L., Cataltepe, Z.: Fast correlation based filter (FCBF) with a different search strategy. In: 23rd International Symposium on Computer and Information Sciences, 2008. ISCIS’08, pp. 1–4. IEEE (2008)

  94. Shahani, K., Udpa, L., Udpa, S.: Time delay neural networks for classification of ultrasonic NDT signals. In: Review of Progress in Quantitative Nondestructive Evaluation, pp. 693–700. Springer (1992)

  95. Shukla, A.K., Singh, P., Vardhan, M.: A two-stage gene selection method for biomarker discovery from microarray data for cancer classification. Chemometr. Intell. Lab. Syst. 183, 47–58 (2018)

    Article  Google Scholar 

  96. Shukla, A.K., Tripathi, D.: Detecting biomarkers from microarray data using distributed correlation based gene selection. Genes Genomics 42, 449–465 (2020)

    Article  Google Scholar 

  97. Shukla, A.K., Tripathi, D., Reddy, B.R., Chandramohan, D.: A study on metaheuristics approaches for gene selection in microarray data: algorithms, applications and open challenges. Evolut. Intell. 13, 309–329 (2019)

    Article  Google Scholar 

  98. Statlog: Australian credit approval data set. http://archive.ics.uci.edu/ml/machine-learning-databases/statlog/australian/australian.dat. Accessed 1 Oct 2019

  99. Statlog: German dataset. https://archive.ics.uci.edu/ml/machine-learning-databases/statlog/german/. Accessed 1 Oct 2019

  100. Thomas, L.C., Edelman, D.B., Crook, J.N.: Credit Scoring and Its Applications. SIAM, Philadelphia (2002)

    Book  MATH  Google Scholar 

  101. Tripathi, D., Cheruku, R., Bablani, A.: Relative performance evaluation of ensemble classification with feature reduction in credit scoring datasets. In: Reddy Edla, D., Lingras, P., Venkatanareshbabu, K. (eds.) Advances in Machine Learning and Data Science, pp. 293–304. Springer, Berlin (2018)

    Chapter  Google Scholar 

  102. Tripathi, D., Edla, D.R., Cheruku, R.: Hybrid credit scoring model using neighborhood rough set and multi-layer ensemble classification. J. Intell. Fuzzy Syst. 34(3), 1543–1549 (2018)

    Article  Google Scholar 

  103. Tripathi, D., Edla, D.R., Cheruku, R., Kuppili, V.: A novel hybrid credit scoring model based on ensemble feature selection and multilayer ensemble classification. Comput. Intell. 35, 371–394 (2019)

    Article  MathSciNet  Google Scholar 

  104. Tripathi, D., Edla, D.R., Kuppili, V., Bablani, A.: Evolutionary extreme learning machine with novel activation function for credit scoring. Eng. Appl. Artif. Intell. 96, 103980 (2020)

    Article  Google Scholar 

  105. Tripathi, D., Edla, D.R., Kuppili, V., Bablani, A., Dharavath, R.: Credit scoring model based on weighted voting and cluster based feature selection. Procedia Comput. Sci. 132, 22–31 (2018)

    Article  Google Scholar 

  106. Tripathi, D., Edla, D.R., Kuppili, V., Dharavath, R.: Binary BAT algorithm and RBFN based hybrid credit scoring model. Multimed. Tools Appl. 79(43), 31889–31912 (2020)

    Article  Google Scholar 

  107. Tsai, C.F.: Feature selection in bankruptcy prediction. Knowl.-Based Syst. 22(2), 120–127 (2009)

    Article  MathSciNet  Google Scholar 

  108. Tsai, C.F., Wu, J.W.: Using neural network ensembles for bankruptcy prediction and credit scoring. Expert Syst. Appl. 34(4), 2639–2649 (2008)

    Article  Google Scholar 

  109. Van Gestel, T., Baesens, B., Suykens, J.A., Van den Poel, D., Baestaens, D.E., Willekens, M.: Bayesian kernel based classification for financial distress detection. Eur. J. Oper. Res. 172(3), 979–1003 (2006)

    Article  MATH  Google Scholar 

  110. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, Berlin (2013)

    MATH  Google Scholar 

  111. Vapnik, V.N.: An overview of statistical learning theory. IEEE Trans. Neural Netw. 10(5), 988–999 (1999)

    Article  Google Scholar 

  112. Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., Lang, K.J.: Phoneme recognition using time-delay neural networks. In: Readings in speech recognition, pp. 393–404. Elsevier (1990)

  113. Wang, G., Hao, J., Ma, J., Jiang, H.: A comparative assessment of ensemble learning for credit scoring. Expert Syst. Appl. 38(1), 223–230 (2011)

    Article  Google Scholar 

  114. Wang, G., Ma, J., Huang, L., Xu, K.: Two credit scoring models based on dual strategy ensemble trees. Knowl.-Based Syst. 26, 61–68 (2012)

    Article  Google Scholar 

  115. Wang, J., Guo, K., Wang, S.: Rough set and Tabu search based feature selection for credit scoring. Procedia Comput. Sci. 1(1), 2425–2432 (2010)

    Article  Google Scholar 

  116. West, D.: Neural network credit scoring models. Comput. Oper. Res. 27(11), 1131–1152 (2000)

    Article  MATH  Google Scholar 

  117. Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, Burlington (2016)

    Google Scholar 

  118. Wongchinsri, P., Kuratach, W.: Sr-based binary classification in credit scoring. In: 2017 14th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), pp. 385–388. IEEE (2017)

  119. Xia, Y., Liu, C., Da, B., Xie, F.: A novel heterogeneous ensemble credit scoring model based on bstacking approach. Expert Syst. Appl. 93, 182–199 (2018)

    Article  Google Scholar 

  120. Xiao, W.B., Fei, Q.: A study of personal credit scoring models on support vector machine with optimal choice of kernel function parameters. Syst. Eng. Theory Pract. 10, 010 (2006)

    Google Scholar 

  121. Xu, D., Zhang, X., Feng, H.: Generalized fuzzy soft sets theory-based novel hybrid ensemble credit scoring model. Int. J. Finance Econ. 24(2), 903–921 (2019)

    Article  Google Scholar 

  122. Yang, Y.: Adaptive credit scoring with kernel learning methods. Eur. J. Oper. Res. 183(3), 1521–1536 (2007)

    Article  MATH  Google Scholar 

  123. Yang, Y., Shen, H.T., Ma, Z., Huang, Z., Zhou, X.: l2, 1-norm regularized discriminative feature selection for unsupervised learning. In: IJCAI Proceedings-international Joint Conference on Artificial Intelligence, vol. 22, p. 1589 (2011)

  124. Yeh, I.C., Lien, C.H.: The comparisons of data mining techniques for the predictive accuracy of probability of default of credit card clients. Expert Syst. Appl. 36(2), 2473–2480 (2009)

    Article  Google Scholar 

  125. Yu, L., Wang, S., Lai, K.K.: An intelligent-agent-based fuzzy group decision making model for financial multicriteria decision support: the case of credit scoring. Eur. J. Oper. Res. 195(3), 942–959 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  126. Zeng, H., Cheung, Y.M.: Feature selection and kernel learning for local learning-based clustering. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1532–1547 (2011)

    Article  Google Scholar 

  127. Zhang, D., Zhou, X., Leung, S.C., Zheng, J.: Vertical bagging decision trees model for credit scoring. Expert Syst. Appl. 37(12), 7838–7843 (2010)

    Article  Google Scholar 

  128. Zhang, W., He, H., Zhang, S.: A novel multi-stage hybrid model with enhanced multi-population niche genetic algorithm: an application in credit scoring. Expert Syst. Appl. 121, 221–232 (2019)

    Article  Google Scholar 

  129. Zhou, L., Lai, K.K., Yen, J.: Credit scoring models with AUC maximization based on weighted SVM. Int. J. Inf. Technol. Decis. Mak. 8(04), 677–696 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diwakar Tripathi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, D., Edla, D.R., Bablani, A. et al. Experimental analysis of machine learning methods for credit score classification. Prog Artif Intell 10, 217–243 (2021). https://doi.org/10.1007/s13748-021-00238-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13748-021-00238-2

Keywords

Navigation