Skip to main content

Advertisement

Log in

Is Planting Trees Enough? The Effect of Different Types of Reforestation on the Offspring of Trypoxylon (Trypargilum) lactitarse (Hymenoptera: Crabronidae) in the Southern Amazon

  • Ecology, Behavior and Bionomics
  • Published:
Neotropical Entomology Aims and scope Submit manuscript

Abstract

The deforestation has led to local loss of species and important ecosystem services performed by them, causing ecological and economic losses. It is proposed that the reforestation of such areas aims to reduce those impacts. However, particularly in the tropics, little is known about the real success of different types of reforestation in the recovery of the species, and especially of the population parameters. Here we evaluated whether different types of reforestations affect Trypoxylon (Trypargilum) lactitarse Saussure (Hymenoptera: Crabronidae) in terms of abundance, percentage of emergence, proportion of males, fluctuating asymmetry, and foraging capacity. We compared primary forest (control) data to data collected in five different habitats: pasture, secondary forest, and tree plantations of Teak, Ficus, and a mixture of native species. The abundance of T. lactitarse was higher in tree plantations than in pasture. However, among the analyzed parameters, Teak plantation presented lower emergence percentage and the majority of individuals born were males. The emerged females in this habitat showed higher asymmetry and lower foraging capacity. Ficus showed lower individual abundance and mixed plantation showed lower emergence percentage, with both plantation types showing higher male emergence. On the other hand, in secondary forest, the analyzed parameters did not differ in relation to the primary forest, being the habitat more efficient in relation to those with tree planting. The changes in population parameters of T. lactitarse in different reforestations and particularly on Teak monocultures were probably attributed to indirect effects, such as low food availability and inadequate environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4
Fig 5

Similar content being viewed by others

References

  • Abrahamczyk S, Gottleuber P, Matauschek C, Kessler M (2011) Diversity and community composition of euglossine bee assemblages (Hymenoptera: Apidae) in western Amazonia. Biodivers Conserv 20:2981–3001

    Article  Google Scholar 

  • Alcock J (1975) Social interactions in the solitary wasp, Cerceris simplex (Hymenoptera: Sphecidae). Behavior 54:142–152

    Article  Google Scholar 

  • Araujo GJ, Fagundes R, Antonini Y (2017) Trap-nesting hymenoptera and their network with parasites in recovered Riparian forests Brazil. Neo Entomol 47:26–36. https://doi.org/10.1007/s13744-017-0504-4

    Article  Google Scholar 

  • Assis JMF, Camillo E (1997) Diversidade, sazonalidade e aspectos biológicos de vespas solitárias (Hymenoptera: Sphecidae: Vespidae) em ninhos armadilhas na região de Ituiutaba. An Soc Entomol Bras 26:335–347

    Article  Google Scholar 

  • Banaszak-Cibicka W, Fliszkiewicz M, Langowska ZM (2018) Body size and wing asymmetry in bees along an urbanization gradient. Apidologie 49:297–306

    Article  Google Scholar 

  • Barral MP, Benayas JMR, Meli P, Maceira NO (2015) Quantifying the impacts of ecological restoration on biodiversity and ecosystem services in agroecosystems: a global meta-analysis. Agri Eco Envirol 202:223–231

    Article  Google Scholar 

  • Benítez HA (2013) Assessment of patterns of fluctuating asymmetry and sexual dimorphism in carabid body shape. Neo Entomol 42:164–169

    Article  Google Scholar 

  • Bennett DM, Hoffmann AA (1998) Effects of size and fluctuating asymmetry on field fitness of the parasitoid Trichogramma carverae (Hymenoptera: Trichogrammatidae). J Anim Ecol 67:580–591

    Article  Google Scholar 

  • Beyer WN, Miller GW, Fleming WJ (1987) Populations of trap-nests wasps near a major source of fluoride emissions in Western Tennessee. Proc Entomol Soc Wash 89:478–482

    Google Scholar 

  • Bohart RM, Menke AS (1976) Sphecid wasps of the world a generic revision. University of California Press, London, p 660

    Google Scholar 

  • Brockmann HJ, Grafen A (1992) Sex rations and life-history patterns of a solitary wasp, Trypoxylon (Trypargilum) politum (Hymenoptera: Sphecidae). Behav Ecol Sociobiol 30:7–27

    Article  Google Scholar 

  • Bueno AF, Paula-Moraes SV, Gazzoni DL, Pomari AF (2013) Economic thresholds in soybean-integrated pest management: old concepts, current adoption, and adequacy. Neo Entomol 42:439–447

    Article  CAS  Google Scholar 

  • Buschini MLT (2007) Life-history and sex allocation in Trypoxylon (syn. Trypargilum) lactitarse (Hymenoptera; Crabronidae). J Zool Syst Evol Res 45:206–213

    Article  Google Scholar 

  • Buschini MLT, Bergamaschi ABC (2014) Sex ratio and parental investment in Trypoxylon (Trypargilum) agamemnon Richards (Hymenoptera, Crabronidae). Braz J Biol 74:231–237

    Article  CAS  PubMed  Google Scholar 

  • Buschini MLT, Donatti AJ (2012) Nesting behavior of Trypoxylon (Trypargilum) agamemnon Richards (Hymenoptera: Crabronidae). Braz J Biol 72:353–362

    Article  CAS  PubMed  Google Scholar 

  • Buschini MLT, Wolff LL (2006) Notes on the biology of Trypoxylon (Trypargilum) opacum Brethes (Hymenoptera: Crabronidae) in southern Brazil. Braz J Biol 66:915–926

    Google Scholar 

  • Buschini MLT, Lazzarini LW, Niesting F (2006) Nesting biology of Trypoxylon (Trypargilum) lactitarse (Hymenoptera; Crabronidae) in trap-nests in southern Brazil. Braz J Biol 66:161–171

    Article  Google Scholar 

  • Buschini MLT, Borda NA, Brescovit AD (2008) Patterns of prey selection of Trypoxylon (Trypargilum) lactitarse Sausurre (Hymenoptera: Crabronidae) in southern Brazil. Braz J Biol 68:519–528

    Article  CAS  PubMed  Google Scholar 

  • Buschini MLT, Caldas TR, Borba NA, Brescovit AD (2010) Spiders used as prey by the hunting wasp Trypoxylon (Trypargilum) agamemnon Richards (Hymenoptera: Crabronidae). Zool Stud 49:169–175

    Google Scholar 

  • Byrne DN, Buchmann SL, Spangler HG (1988) Relationship between wing loading, wingbeat frequency and body mass in homopterous insects. J Exp Biol 135:9–24

    Google Scholar 

  • Camillo E, Brescovit AD (1999) Aspectos biológicos de Trypoxylon (Trypargilum) lactitarse Saussure e Trypoxylon (Trypargilum) rogenhoferi Kohl (Hymenoptera: Sphecidae) em ninhos-armadilhas, com especial referência a suas presas. An Soc Entomol Bras 28:251–262

    Article  Google Scholar 

  • Camillo E, Garofalo CA, Serrano JC, Muccillo G (1995) Diversidade e abundância sazonal de abelhas e vespas solitárias em ninhos armadilhas (Hymenoptera: Apocrita: Aculeata). Rev Bras Entomol 39:459–470

    Google Scholar 

  • Chang CH, Lin YH, Chen IH, Chuang SC, Chen JH (2007) Taxonomic re-evaluation of the Taiwanese montane earthworm Amynthas wulinensis Tsai, Shen & Tsai, 2001 (Oligochaeta: Megascolecidae): polytypic species or species complex? Org Divers Evol 7:231–240

    Article  Google Scholar 

  • Charnov EL (1982) The theory of sex allocation. Princeton University Press, Princeton, p 355

    Google Scholar 

  • Chazdon RL (2003) Tropical forest recovery: legacies of human impact and natural disturbances. Perspect Plant Ecol Evol Syst 6:51–71

    Article  Google Scholar 

  • Clarke GM (1993) Patterns of developmental stability of Chrysopa perla L. (Neuroptera: Chrysopidae) in response to environmental pollution. Environ Entomol 22:1362–1366

    Article  Google Scholar 

  • Clarke GM, Brand GW, Whitten MJ (1986) Fluctuating asymmetry: a technique for measuring developmental stress caused by inbreeding. Aust J Biol Sci 39:145–153

    Article  Google Scholar 

  • Coelho JR, Holliday CW (2001) Effects of size and flight performance on intermale mate competition in the cicada killer, Sphecius speciosus (Hymenoptera: Sphecidae). J Insect Behav 14:345–351

    Article  Google Scholar 

  • Coville RE (1981) Biological observations on three Trypoxylon wasps in the subgenus Trypargilum from Costa Rica: T. nitidum schultessi, T. saussurei and T. lactitarse (Hymenoptera: Sphecidae). Pan Pac Entomol 57:332–340

    Google Scholar 

  • Coville RE (1982) Wasps of the genus Trypoxylon subgenus Trypargilum in North America. University of California Press, Berkeley, p 163

    Google Scholar 

  • Crawley MJ (2007) The R book. Imperial College London, Silwood Park Chichester, p 1080

    Book  Google Scholar 

  • Crozier RH, Pamillo P (1996) One into two will go. Nature 383:574–575

    Article  CAS  Google Scholar 

  • Didham RK (1997) The infuence of edge effects and forest fragmentation on leaf-litter invertebrates in Central Amazonia. In: Laurance WF, Bierregaard RO (eds) Tropical forest remnants: ecology, Manag Cons Frag Communt Chicago, pp 55–70

    Google Scholar 

  • Didham RK (1998) Altered leaf-litter decomposition rates in tropical forest fragments. Oecologia 116:397–406

    Article  PubMed  Google Scholar 

  • Dunne T, Western D, Dietrich WE (2011) Effects of cattle trampling on vegetation, infiltration, and erosion in a tropical rangeland. J Arid Environ 75:58–69

    Article  Google Scholar 

  • Dutra S, Marco P (2015) Bionomic differences in odonates and their influence on the efficiency of indicator species of environmental quality. Ecol Indic 49:132–142

    Article  Google Scholar 

  • Edge DA (2005) Butterfly conservation in the southern Cape. Metamorphosis 16:28–46

    Google Scholar 

  • Endler JA (1977) Geographic variation, speciation and clines. Monogr Popul Biol 10:1–246

    CAS  PubMed  Google Scholar 

  • Engelbrecht IA (2010) Invertebrate species inventories in protected area management: are they useful? Afr Entomol 18:235–245

    Article  Google Scholar 

  • Evans HE, Eberhard MJ (1970) The wasps. The University of Michigan Press, Ann Arbor, p 265

    Google Scholar 

  • Falcão CF, Dátillo W, Izzo TJ (2015) Efficiency of different planted forests in recovering biodiversity and ecological interactions in Brazilian Amazon Forest. For Ecol Manag 339:105–111

    Article  Google Scholar 

  • Fearnside PM (2006) Deforestation in Amazonia: dynamics, impacts and control. Acta Amaz 36:395–400

    Article  Google Scholar 

  • Fearnside P, Figueiredo A (2017) China’s influence on deforestation in Brazilian Amazonia: a growing force in the State of Mato Grosso. In: Ray R, Gallagher K, Lopez A, Sanborn C (eds) China and sustainable development in Latin America: the social and environmental dimension, London, pp 229–266

    Google Scholar 

  • Fisher RA (1958) The genetical theory of natural selection. The Clarendon Press, New York, p 308

    Google Scholar 

  • Fontaine C, Dajoz I, Meriguet J, Loreau M (2006) Functional diversity of plant–pollinator interaction webs enhances the persistence of plant communities. PLoS Biol 4:129–135

    Article  CAS  Google Scholar 

  • Gathman A, Tscharntke T (2002) Foraging ranges of solitary bees. J Anim Ecol 71:757–764

    Article  Google Scholar 

  • Gibbs HK, Ruesch AS, Achard F, Clayton MK, Holmgren P, Ramankutty N, Foley JA (2010) Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. PNAS 107:16732–16737

    Article  PubMed  PubMed Central  Google Scholar 

  • Godfray HCJ (1988) Virginity in haplodiploid populations: a study on lig wasps. Eco Entomol 13:283–291

    Article  Google Scholar 

  • Guariguata MR, Ostertag R (2001) Neotropical secondary forest succession: changes in structural and functional characteristics. For Ecol Manag 148:185–206

    Article  Google Scholar 

  • Hamilton WD (1979) Wingless and fighting males in fig wasps and other insects. In: Blum MS, Blum NA (eds) Reproductive competition and sexual selection in insects. Academic Press, London, pp 167–220

    Google Scholar 

  • Hardy ICW, Dijkstra LJ, Gillis JEM, Luft PA (1998) Patterns of sex ratio, virginity and developmental mortality in gregarious parasitoids. Biol J Linn Soc 64:239–270

    Article  Google Scholar 

  • Hardy ICW, Stokkebo S, Bùnlùkke-Pedersen J, Sejr MK (2000) Insemination capacity and dispersal in relation to sex allocation decisions in Goniozus legneri (Hymenoptera: Bethylidae): why are there more males in larger broods? Ethology 106:1021–1032

    Article  Google Scholar 

  • Ho GWC, Leung KMY, Lajus D, Ng JSS, Chan BKK (2009) Fluctuating asymmetry of Amphibalanus (Balanus) amphitrite (Cirripedia: Thoracica) in association with shore height and metal pollution. Hydrobiologia 621:21–32

    Article  CAS  Google Scholar 

  • Kemp DJ, Alcock J (2008) Aerial contests, sexual selection and flight morphology in solitary Pompilid wasps. Ethology 114:195–202

    Article  Google Scholar 

  • Klein AM, Steffan-Dewenter I, Tscharntke T (2002) Effects of land-use intensity in tropical agroforestry systems on flower-visiting and trap-nesting bees and wasps. Conserv Biol 16:1003–1014

    Article  Google Scholar 

  • Krombein KV (1967) Trap-nesting wasps and bees: life histories, nests and associates. Washington, p 569

  • Kurn D, Bretz S, Akbari H (1994) The potential for reducing urban air temperatures and energy consumption through vegetative cooling. ACEEE summer study on Energy Efficiency in Buildings, America Council for an Energy Efficient Economy. Pacific Grove: American Council for an Energy Efficient Economy. http://www.osti.gov/bridge/servlets/purl/10180633-hLSlld/native/10180633.pdf. Accessed 11 August 2017

  • Lack JB, Monette MJ, Johanning EJ, Sprengelmeyer QD, Pool JE (2015) Decanalization of wing development accompanied the evolution of large wings in high-altitude Drosophila. PNAS 113:1014–1019

    Article  CAS  Google Scholar 

  • Laurance WF, Camargo JLC, Luizão RCC, Laurance SG, Pimm SL, Bruna EM, Stouffer PC, Bruce Williamson G, Benítez-Malvido J, Vasconcelos HL, van Houtan KS, Zartman CE, Boyle SA, Didham RK, Andrade A, Lovejoy TE (2011) The fate of Amazonian forest fragments: a 32-year investigation. Bio Conserv 144:56–67

    Article  Google Scholar 

  • Leung B, Forbes MR (1996) Fluctuating asymmetry in relation to stress and fitness: effects of trait type as revealed by meta-analysis. Ecoscience 3:400–413

    Article  Google Scholar 

  • Lobregat G, Perilli MLL, Neves F, Campos R (2017) Fluctuating asymmetry, leaf thickness and herbivory in Tibouchina granulosa: an altitudinal gradient analysis. Arthropod Plant Interact 12:277–282. https://doi.org/10.1007/s11829-017-9568-7

    Article  Google Scholar 

  • Loyola RD, Martins RP (2008) Habitat structure components are effective predictors of trap-nesting Hymenoptera diversity. Basic Appl Ecol 9:765–742

    Article  Google Scholar 

  • Marden JH (1989) Body building dragonflies: costs and benefits of maximizing flight muscle. Physiol Zool 62:505–521

    Article  Google Scholar 

  • McGeoch MA, Sithole H, Samways MJ, Simaika JP, Pryke JS, Picker M, Uys C, Armstrong AJ, Dippenaar-Schoeman AS, Engelbrecht IA, Braschler B, Hamer M (2011) Conservation and monitoring of invertebrates in terrestrial protected areas. Koedoe 53:1–13

    Google Scholar 

  • Miklasevskaja M, Packer L (2015) Fluctuating asymmetry in am extreme morphological adaptation in the Chilean bee Xeromelissa rozeni (Hymenoptera: Colletidae). Can J Zool 93:833–840

    Article  Google Scholar 

  • Mitchell MG, Suarez-Castro AF, Martinez-Harms M, Maron M, McAlpine C, Gaston KJ, Johansen K, Rhodes JR (2015) Reframing landscape fragmentation’s effects on ecosystem services. Trends Ecol Evol 30:190–198

    Article  PubMed  Google Scholar 

  • Mitton JB, Grant MC (1984) Association among protein heterozygosity, growth rate and developmental homeostasis. Ann Rev Ecol System 15:479–499

    Article  Google Scholar 

  • Molumby A (1997) Why make daughter larger? Maternal sex-allocation and sex-dependent selection for body size in a mass-provisioning wasp Trypoxylon politum. Behav Ecol 8:279–287

    Article  Google Scholar 

  • Morato EF (2001) Biologia e ecologia de Anthodioctes moratoi Urban (Hymenoptera, Megachilidae, Anthidiini) em matas contínuas e fragmentos na Amazônia Central, Brasil. Rev Bras Zool 18:729–736

    Article  Google Scholar 

  • Morato EF, Campos LAO (2000) Efeitos da fragmentação florestal sobre vespas e abelhas solitárias em uma área da Amazônia Central. Rev Bras Zool 17:429–444

    Article  Google Scholar 

  • Newbold T, Hudson LN, Hill SLL, Contu S, Lysenko I, Senior RA, Börger L, Bennett DJ, Choimes A, Collen B, Day J, de Palma A, Díaz S, Echeverria-Londoño S, Edgar MJ, Feldman A, Garon M, Harrison MLK, Alhusseini T, Ingram DJ, Itescu Y, Kattge J, Kemp V, Kirkpatrick L, Kleyer M, Correia DLP, Martin CD, Meiri S, Novosolov M, Pan Y, Phillips HRP, Purves DW, Robinson A, Simpson J, Tuck SL, Weiher E, White HJ, Ewers RM, Mace GM, Scharlemann JPW, Purvis A (2015) Global effects of land use on local terrestrial biodiversity. Nature 520:45–50

    Article  CAS  PubMed  Google Scholar 

  • Nichols E, Larsen T, Spector S, Davis AL, Escobar F, Favila M, Vulinec K (2007) Global dung beetle response to tropical forest modification and fragmentation: a quantitative literature review and meta-analysis. Bio Conserv 137:1–19

    Article  Google Scholar 

  • Niemi GJ, McDonald ME (2004) Application of ecological indicators. An Rev Ecol Evol Syst 35:89–111

    Article  Google Scholar 

  • Nunney L, Luck RF (1988) Factors influencing the optimum sex ratio in structured populations. J Theor Biol 33:1–30

    Article  CAS  Google Scholar 

  • Oliveira-Nascimento AL, Garófalo CA (2014) Trap-nesting solitary wasps (Hymenoptera: Aculeata) in an insular landscape: mortality rates for immature wasps, parasitism, and sex ratios. Sociobiology 61:207–217

    Google Scholar 

  • Padula RC, Silva LP (2005) Gestão e licenciamento ambiental no Brasil: modelo de gestão focado na qualidade do meio ambiente. Cadernos EBAPE.BR, Rio de Janeiro, pp 1–15

    Google Scholar 

  • Palmer AR, Strobeck C (1986) Fluctuating asymmetry: measurement, analysis, patterns. Annu Rev Ecol Syst 17:391–421

    Article  Google Scholar 

  • Pearce JL, Venier LA (2006) The use of ground beetles (Coleoptera: Carabidae) and spiders (Araneae) as bioinidcators of sustainable forest management: a review. Ecol Indic 6:780–793

    Article  Google Scholar 

  • Pérez-Maluf R (1993) Biologia de vespas e abelhas solitárias, em ninhos armadilhas em Viçosa - MG. Dissertation, Universidade Federal de Viçosa

  • Pinto NS, Juen L, Cabette HSR, Júnior PM (2012) Fluctuating asymmetry and wing size of Argia tinctipennis Selys (Zygoptera: Coenagrionidae) in relation to riparian forest preservation status. Neo Entomol 41:178–185

    Article  CAS  Google Scholar 

  • Piscart C, Moreteau JC, Beisel JN (2005) Biodiversity and structure of macroinvertebrate communities along a small permanent salinity gradient (Meurthe River, France). Hydrobiologia 551:227–236

    Article  Google Scholar 

  • Pitilin RB, Araújo MS, Buschini MLT (2012) Individual specialization in the hunting-wasp Trypoxylon (Trypargilum) agamemnon Richards (Hymenoptera: Crabronidae). Zool Stud 51:655–662

    Google Scholar 

  • Polidori C, Santoro D, Bluthgen N (2013) Does prey mobility affect niche width and individual specialization in hunting wasps? A network-based analysis. Oikos 122:385–394

    Article  Google Scholar 

  • R Development Core Team R (2018) A language and environment for statistical computing. Version 3.5.1 [software]. User’s guide and application published http://www.R-project.org

  • Rodrigues DJ, Izzo TJ, Battirola LD (2011) Descobrindo a Amazônia Meridional: Biodiversidade da Fazenda São Nicolau. Pau e Prosa Comunicação, Cuiabá, p 301

    Google Scholar 

  • Samejima Y, Tsubaki Y (2010) Body temperature and body size affect flight performance in a damselfly. Behav Ecol Sociobiol 64:685–692

    Article  Google Scholar 

  • Sanseverino AM, Nessimian JL (2008) Larvas de Chironomidae (Diptera) em depósitos de folhiço submerço em um richo de primeira ordem da Mata Atlântica (Rio de Janeiro, Brasil). Rev Bras Entom 52:95–104

    Article  Google Scholar 

  • Sheldon BC, Merilä J, Lindgren G, Ellegren H (1998) Gender and environmental sensitivity in nestling collared flycatchers. Ecol press 79:1939–1948

    Article  Google Scholar 

  • Shintarou O, Takayoshi N (1999) Factors affecting female-biased sex ratio in a trap-nesting wasp, Trypoxylon malaisei. Rev Popul Ecol 41:169–175

    Article  Google Scholar 

  • Steffan-Dewenter I, Tscharntke T (2002) Insect communities and biotic interactions on fragmented calcareous grassland: a mini review. Biol Conserv 104:275–284

    Article  Google Scholar 

  • Strohm E, Linsenmair KE (1999) Measurement of parental investment and sex allocation in the European beewolf Philanthus triangulum F. (Hymenoptera: Sphecidae). Behav Ecol Sociobiol 47:76–88

    Article  Google Scholar 

  • Swaddle JP (1996) Reproductive success and symmetry in zebra finches. Anim Behav 51:203–210

    Article  Google Scholar 

  • Swaddle JP, Witter MS, Cuthill A, McCowen P (1997) Plunage condition affects flight performance in starlings: implications for developmental homeostasis, abrasion and moult. J Avian Biol 27:103–111

    Article  Google Scholar 

  • Thomas ALR (1993) On the aerodynamics of birds’ tails. Philos Trans R Soc Lond B 340:361–380

    Article  Google Scholar 

  • Tomkins JL, Kotiaho JS (2001) Fluctuating asymmetry. Encyclopedia of life and sciences. https://doi.org/10.1038/npg.els.0003741

  • Tscharntke T, Gathmann A, Steffandewenter I (1998) Bioindication using trap-nesting bees and wasps and their natural enemies: community structure and interactions. J Appl Ecol 35:708–719

    Article  Google Scholar 

  • Tylianakis JM, Klein AM, Tscharntke T (2005) Spatiotemporal variation in the effects of a tropical habitat gradient on Hymenoptera diversity. Ecology 86:3296–3302

    Article  Google Scholar 

  • Uetz GW, Halaj J, Cady AB (1999) Guild structure of spiders in major crops. J Arachnol 27:270–280

    Google Scholar 

  • Uhl C, Clark K, Maquirino P (1988) Vegetation dynamics in Amazonian treefall gaps. Ecology 69:751–763

    Article  Google Scholar 

  • Uys C, Hamer M, Slotow R (2006) The effect of burn area on invertebrate recolonisation in grasslands in the Drakensberg, South Africa. Afr Zool 41:51–65

    Article  Google Scholar 

  • Vandenbussche PSP, Spennato G, Pierson PM (2018) Assessment of the use of Oblada melanura (L. 1758) otolith fluctuating asymmetry as environmental disturbance indicator. Mar Environ Res 136:48–53

    Article  CAS  PubMed  Google Scholar 

  • Vangestel C, Braeckman BP, Matheve H, Lens L (2011) Constraints on home range behaviour affect nutritional condition in urban house sparrows (Passer domesticus). Biol J Linn Soc 101:41–50. https://doi.org/10.1111/j.1095-8312.2010.01493.x

    Article  Google Scholar 

  • Yao I (2011) Phylogenetic comparative methods reveal higher wing loading in ant-attended Tuberculatus aphids (Hemiptera: Aphididae). Can Entomol 143:34–43

    Article  Google Scholar 

  • Zurbuchen A, Bachofen C, Müller A, Hein S, Dorn S (2010) Are landscape structures insurmountable barriers for foraging bees? A mark-recapture study with two solitary pollen specialist species. Apidologie 41:497–508

    Article  Google Scholar 

Download references

Acknowledgments

We highly acknowledge the Office National des Forêts of Brazil for the logistical support and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior for the scholarships provided to GJA.

Author information

Authors and Affiliations

Authors

Contributions

GJA, DST and TJI Conceptualization, GJA, DST and TJI Data curation, GJA, DST and TJI Formal analysis, TJI Funding acquisition, GJA, DST and TJI Investigation, GJA and TJI Methodology, TJI Project administration, TJI Resources, TJI Supervision, GJA, DST and TJI Validation, GJA, DST and TJI Visualization, GJA and TJI Writing (original draft preparation), GJA, DST and TJI Writing (review and editing).

Corresponding author

Correspondence to Gustavo Júnior de Araújo.

Additional information

Edited by Heraldo Vasconcelos – UFU

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Araújo, G.J., Storck-Tonon, D. & Izzo, T.J. Is Planting Trees Enough? The Effect of Different Types of Reforestation on the Offspring of Trypoxylon (Trypargilum) lactitarse (Hymenoptera: Crabronidae) in the Southern Amazon. Neotrop Entomol 48, 572–582 (2019). https://doi.org/10.1007/s13744-019-00682-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13744-019-00682-9

Keywords

Navigation