Skip to main content
Log in

Eco-friendly and green chromatographic method for the simultaneous determination of chlorocresol and betamethasone dipropionate in topical formulations using Box–Behnken design

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Betamethasone dipropionate topical formulations are using to treat anti-inflammatory skin diseases such as dermatitis, eczema, and psoriasis. The current research study confers the eco-friendly toward green chemistry and stability-indicating RP-UHPLC method for the simultaneous determination of chlorocresol (CCL) and betamethasone dipropionate (BTD) in topical formulations (cream and ointment). The CCL and BTD were accurately quantitated by employing beclomethasone dipropionate (BCD) as an internal standard. The developed method was optimized utilizing QbD-based Box–Behnken Design (BBD) prior to method validation for the intended purpose. The critical quality attributes (CQAs) and critical method parameters (CMPs) identified and executed 15 design of experiments (DoEs). The foremost influencing factors were fine-tuned and optimized using graphical and numerical evaluation. The chromatographic separation was accomplished on Acquity UPLC BEH C18, 100 mm × 2.1 mm, 1.7 µm column with potassium phosphate buffer (0.02 M) and acetonitrile (ACN) using gradient elution with a runtime of 8 min. The set flow rate and injection volumes were 0.4 mL/min and 5 µL, respectively. The detection was made at 240 nm and maintained column oven temperature at 40 °C. The analytical method was validated as per the current ICH guideline Validation of Analytical Procedures: Text and Methodology Q2(R1). The linearity ranges for CCL, BTD, and BCD were 20.4–61.1, 10.3–30.8, and 10.4–31.1 µg/mL with correlation coefficients of > 0.999. As revealed, the method was superior accuracy with % recovery for CCL 98.6–101.5 and BTD 99.6–101.6 at three different levels. The results dictate the fitness of the method for the routine quality control determination of CCL and BTD from its commercial topical formulations. The proposed method with a low flow rate and less runtime benefits to analyze high throughput quality control samples with less solvent consumption, and it helps the environment by supporting the green chemistry concept.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All the experimental data was included in the manuscript.

References

  1. D.A.W. Downie, G.D. Cains, R.D. Peek, Aust. J. Derm. 19, 114–117 (1978)

    Article  CAS  Google Scholar 

  2. Betamethasone Dipropionate, USP43-NF38 2S, 546 (2020)

  3. C.R. Raymond, J.S. Paul, E.Q. Marian, Handbook of pharmaceutical excipients, 6th edn. (Pharmaceutical press, London, 2009), P. 168

  4. E.R.M. Kedor-Hackmann, E.A.S. Gianotto, M.I.R.M. Santoro, Drug Dev. Ind. Pharm. 24, 553–555 (1998)

    Article  CAS  Google Scholar 

  5. L. Mei, W. Nian, J. Pharm. Biomed. Anal. 19, 945–954 (1999)

    Article  Google Scholar 

  6. M. Shou, W.A. Galinada, Y.C. Wei, Q. Tang, R.J. Markovich, A.M. Rustum, J. Pharm. Biomed. Anal. 50, 356–361 (2009)

    Article  CAS  Google Scholar 

  7. D.B. Suryakant, J.R. Sadhana, J. AOAC Int. 94, 106–109 (2011)

    Article  Google Scholar 

  8. R. Chinmoy, C. Jitamanyu, R.R. Rammohan, Arch. Appl. Sci. Res. 5, 15–24 (2013)

    Google Scholar 

  9. L.T. Shankar, K.D. Rajesh, T.B. Madhusudan, Asian J. Chem. 26, 6465–6468 (2014)

    Article  Google Scholar 

  10. B. Mayank, P.B. Jadav, Pharm. Chem. J. 2, 17–21 (2015)

    Google Scholar 

  11. C.E. Milena, A.S. Ana Laura, B. Rudy, B.A. Magali, Cri. Rev. Anal. Chem. 50, 111–124 (2020)

    Article  Google Scholar 

  12. L. Brealey, K.A. Proctor, J. Pharm. Pharmacol. 7, 830–835 (1955)

    Article  CAS  Google Scholar 

  13. R. Gatti, P. Roveri, D. Bonazzi, V. Cavrini, J. Pharm. Biomed. Anal. 16, 405–412 (1997)

    Article  CAS  Google Scholar 

  14. S. Saleem, M.S. Muneera, O.A. Thusleem, T. Muhammad, V.K.A. Anand, J. Chromatogr, Science 47, 178–183 (2009)

    Google Scholar 

  15. Z. Lun-Yi, A.M. Barbero, H.F. Frasch, Open Anal. Chem. J. 4, 10–17 (2010)

    Article  Google Scholar 

  16. J.G. Lee, S. Shin, H. Shin, Y. Huh, S. Lee, D. Kim, S. Lee, Y. Kim, S.B. Han, J. Lee, J.H. Park, S.W. Kwon, J. Pharm. Investig. 42, 47–50 (2012)

    Article  CAS  Google Scholar 

  17. Z.M. Turabi, O.A. Khatatbeh, Int. J. Pharm. Sci. Drug Res. 6, 140–144 (2014)

    Google Scholar 

  18. S.E. Johnston, N.L. Gill, Y.C. Wei, R. Markovich, A.M. Rustum, J. Chromatogr. Sci. 48, 733–741 (2010)

    Article  CAS  Google Scholar 

  19. S.D. Bendre, P.J. Ghule, Int. Res. J. Pharm. 7, 74–83 (2016)

    Article  CAS  Google Scholar 

  20. S.T. Hassib, M.A. Mahrouse, E.F. Elkady, R.M. Sayed, J. Chromatogr. Sci. 56, 716–723 (2018)

    Article  CAS  Google Scholar 

  21. S.P. Tulshidas, S.D. Ashwini, Chromatographia 82, 579–590 (2019)

    Article  Google Scholar 

  22. T. Dongala, L.N.R. Katakam, A.K. Palakurthi, N.K. Katari, Anal. Chem. Lett. 9, 697–710 (2019)

    Article  CAS  Google Scholar 

  23. S.R. Chaudhari, A.A. Shirkhedkar, J. Anal. Sci. Technol. 10, 10 (2019). https://doi.org/10.1186/s40543-019-0170-8

    Article  Google Scholar 

  24. V.B. Subramanian, N.K. Katari, T. Dongala, S.B. Jonnalagadda, Biomed. Chromatogr. 34, e4719 (2020)

    Article  CAS  Google Scholar 

  25. A.K. Palakurthi, T. Dongala, R.K. Yalavarthi, J. Anireddy, Biomed. Chromatogr. 34, e4755 (2020)

    Article  CAS  Google Scholar 

  26. M. Patel, C. Kothari, J. Anal. Sci. Technol. 11, 29 (2020). https://doi.org/10.1186/s40543-020-00228-4

    Article  CAS  Google Scholar 

  27. V.M. Marisetti, N.K. Katari, Chromatographia 84, 359–369 (2021)

    Article  CAS  Google Scholar 

  28. S. Pirsa, F.M. Nejad, Sens. Rev. 37, 155–164 (2021). https://doi.org/10.1108/SR-10-2016-0217

    Article  Google Scholar 

  29. S.K. Muchakayala, K. Pavithra, N.K. Katari, V.M. Marisetti, T. Dongala, R.V.K. Vegesna, Anal. Methods 13, 3705–3723 (2021). https://doi.org/10.1039/D1AY01096D

    Article  CAS  PubMed  Google Scholar 

  30. S. Kalantari, L. Roufegarinejad, S. Pirsa, M. Gharekhani, Main Group Chem. 19, 61–80 (2020). https://doi.org/10.3233/MGC-190821

    Article  CAS  Google Scholar 

  31. S. Pirsa, Ş Tağı, M. Rezaei, J. Electron. Mater. 50, 3406–3414 (2021). https://doi.org/10.1007/s11664-021-08855-2

    Article  CAS  Google Scholar 

  32. M. Alizadeh, S. Pirsa, N. Faraji, Food Anal. Methods 10, 2092–2101 (2017). https://doi.org/10.1007/s12161-016-0747-4

    Article  Google Scholar 

  33. S. Pirsa, M. Alizadeh, N. Ghahremannejad, Curr. Anal. Chem. 12, 457–464 (2016). https://doi.org/10.2174/1573411012666151009195422

    Article  CAS  Google Scholar 

  34. Box-Behnken Design. https://en.wikipedia.org/wiki/Box–Behnken_design Accessed August 13, 2021

  35. Green chemistry pocket guide. https://www.acs.org/content/dam/acsorg/greenchemistry/redesign/principles/the-12-principles-of-green-chemistry-pocket-guide.pdf. Accessed May 27, 2021

  36. Paul Anastas. https://en.wikipedia.org/wiki/Paul_Anastas Accessed May 27, 2021

  37. V.K. Ahluwalia, M. Kidwai, Basic Principles of Green Chemistry. In: New Trends in Green Chemistry. (Springer, Dordrecht, 2004), P. 5–14. https://doi.org/10.1007/978-1-4020-3175-5_3

  38. N. Alizadeh, A.A. Ataei, S. Pirsa, J. Iran. Chem. Soc. 12, 1585–1594 (2015). https://doi.org/10.1007/s13738-015-0631-y

    Article  CAS  Google Scholar 

  39. S. Pirsa, Nanosci. Nanotechnol. - Asia 6, 119–127 (2016)

    Article  CAS  Google Scholar 

  40. S. Pirsa, J. Sep. Sci. 40, 1724–1730 (2017). https://doi.org/10.1002/jssc.201601393

    Article  CAS  PubMed  Google Scholar 

  41. S. Pirsa, E. Banafshechin, S. Amiri, A. Rahimirad, J. Ghafarzadeh, J. Iran. Chem. Soc. 18, 1167–1177 (2021). https://doi.org/10.1007/s13738-020-02100-z

    Article  CAS  Google Scholar 

  42. N. Alizadeh, S. Pirsa, A. Mani-Varnosfaderani, M.S. Alizadeh, IEEE Sens. J. 15, 4130–4136 (2015). https://doi.org/10.1109/JSEN.2015.2411515

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Douglas Pharma US Inc management for approving the publication of this article.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

SKM performed a literature search, development of the RP-UHPLC method, data interpretation, QbD experimentation and data analysis, method validation, and original draft preparation. TD involved in QbD experiments planning, data analysis, and original draft preparation. VMM participated in manuscript review and editing. GV supported us to improve the quality of draft during revision and to address the comments in systemic way. RVKV helped with resources and proofreading. NKK provided guidance on the selection of journal and supervision of the entire process. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Naresh Kumar Katari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest/ competing interests.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Consent for publication

We authorize to publish the article without any conflict.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muchakayala, S.K., Katari, N.K., Dongala, T. et al. Eco-friendly and green chromatographic method for the simultaneous determination of chlorocresol and betamethasone dipropionate in topical formulations using Box–Behnken design. J IRAN CHEM SOC 19, 1397–1412 (2022). https://doi.org/10.1007/s13738-021-02388-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-021-02388-5

Keywords

Navigation