Skip to main content
Log in

Selective transport of zirconium (IV) and niobium (V) from hydrochloric media through a bulk liquid membrane

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

The selective transport of zirconium/niobium from hydrochloric medium has been investigated through a bulk liquid membrane (BLM) using tri-n-butyl-phosphate (TBP), tri-n-octylamine and dibenzo-18-crown-6 (DBC-6) as the extractants (carriers). The Optimization studies have been carried out by scrutinizing the effect of variables such as the hydrochloric acid concentration in the feed solution, membrane type and hydrochloric acid concentration in the strip solution using the Taguchi approach. The Quantitative transport of zirconium/niobium has been observed by 30% (v/v) TBP in 1200 min from the feed composed of a 9.0 M hydrochloric acid solution of Zr(IV), Nb(V) and lanthanide cations, while the transport of other cations, which have been presented along with Zr/Nb are less than 3% during the same time. Moreover, the possible mechanism of Zr(IV)/Nb(V) ion transport through the BLM has also been discussed and the results show a consecutive, irreversible second-order reaction at the interfaces. Transfer kinetics studies show that niobium transfer process exhibits slightly faster kinetics than zirconium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

n :

Number of tests

yi :

Experimental value in the ith experiment

RF:

Recovery factor

TF:

Transport factor

C 0 :

Initial metal ion concentration (mol m−3)

C t :

Metal ion concentration at any time (mol m−3)

V :

Phase volume (m3)

R :

Reduced dimensionless mole fraction

K 1, K 2 :

Rate constants (h−1)

d :

Donor phase

m :

Membrane phase

a :

Acceptor phase

exp:

Experimental data

calc:

Calculated data

i :

Metal species

nd:

Order of extraction reaction

nm:

Order of back-extraction reaction

References

  1. C.K. Gupta, A. Suri, Extractive Metallurgy of Niobium (CRC Press, Baco Raton, 1993), pp. 1–44

    Google Scholar 

  2. V. Gerasimovsky, Geochemistry of the Ilimaussaq Alkaline Massif (South-West Greenland) (Nauka, Moskow, 1969) p. 174

    Google Scholar 

  3. R. Miller, Geology of the strange lake alkalic complex and the associated Zr–Y–Nb–Be–REE mineralization, current research. Nfld. Dept. Mines Energy Miner. Dev. Div. Rep. 86 (1986) pp. 11–19

    Google Scholar 

  4. D. Trueman, J. Pedersen, L. de St Jorre, D. Smith, The Thor Lake rare-metal deposits, Northwest Territories. Can. Inst. Mining Metall. 39, 280 (1988)

    Google Scholar 

  5. L. Kogarko, Role of Volatiles: The Alkaline Rocks (Wiley and Sons, New York, 1974), pp. 474–487

    Google Scholar 

  6. P. Mishra, V. Chakravortty, K. Dash, N. Das, S. Bhattacharyya, J. Radioanal. Nucl. Chem. 131, 281 (1989)

    Article  CAS  Google Scholar 

  7. T. Ishimori, H. Umesawa, K. Watanabe, J. Atomic Energy Soc. Jpn. 1, 299 (1959)

    Article  CAS  Google Scholar 

  8. T. Shigematsu, M. Tabushi, M. Matsui, B. Chem. Soc. Jpn. 41, 595 (1962)

    Google Scholar 

  9. K.K. Bhatluri, Liquid membrane based technology for the separation of toxic heavy metals from industrial effluents, (Doctoral dissertation, 2016)

  10. M. Benomar, C. Mendiguchia, M. Garcia-Vargas, C. Moreno, A liquid membrane-based green method for the separation and determination of lead in saline waters. Spectrosc. Lett. 44, 83–87 (2011)

    Article  CAS  Google Scholar 

  11. P. Mohapatra, V. Manchanda, Indian J. Chem. A 42, 2925 (2003)

    Google Scholar 

  12. M.E. Campderrós, J. Marchese, Hydrometallurgy 61, 89 (2001)

    Article  Google Scholar 

  13. X. Yang, A. Fane, C. Pin, Chem. Eng. J. 88, 37 (2002)

    Article  CAS  Google Scholar 

  14. M.E. Campderrós, J. Marchese, J. Membr. Sci. 164, 205 (2000)

    Article  Google Scholar 

  15. D. Buachuang, P. Ramakul, N. Leepipatpiboon, U. Pancharoen, J. Alloys Compd. 509, 9549 (2011)

    Article  CAS  Google Scholar 

  16. J. Antony, F. Jiju, Antony, Work Stud. 50, 141 (2001)

    Article  Google Scholar 

  17. R.K. Roy, Design of Experiments Using the Taguchi Approach: 16 Steps to Product and Process Improvement, (Wiley, United states of America, 2001) pp. 207–239

    Google Scholar 

  18. J.H. Kanzelmeyer, A spectrophotometric study of niobium (V) in hydrochloric acid solution, (A thesis submitted to Oregon State College, 1955), pp. 1–17

  19. T. Omori, N. Suzuki, Bull. Chem. Soc. Jpn. 35(10), 1633 (1962)

    Article  CAS  Google Scholar 

  20. W.T. Elwell, D.F. Wood, Anal. Chim. Acta 26, 1 (1962)

    Article  CAS  Google Scholar 

  21. Y.K. Agrawal, S. Sudhakar, Sep. Puri. Tech. 27(2), 111 (2002)

    Article  CAS  Google Scholar 

  22. A.E. Levitt, H. Freund, J. Am. Chem. Soc. 78, 1545 (1956)

    Article  CAS  Google Scholar 

  23. E. Scadden, N. Ballou, Anal. Chem. 25, 1602 (1953)

    Article  CAS  Google Scholar 

  24. R. Biswas, M. Hayat, Hydrometallurgy 63, 149 (2002)

    Article  CAS  Google Scholar 

  25. M.S. Lee, H.Y. Lee, J. Korean Inst. Res. Recycl. 20(6), 56 (2011)

    CAS  Google Scholar 

  26. A. Yilmaz, A. Kaya, H.K. Alpoguz, M. Ersoz, M. Yilmaz, Sep. Purif. Technol. 59, 1 (2008)

    Article  CAS  Google Scholar 

  27. W. Zhang, J. Liu, Z. Ren, S. Wang, C. Du, J. Ma, Chem. Eng. J. 150, 83 (2009)

    Article  CAS  Google Scholar 

  28. F. Zahakifar, A. Charkhi, M. Torab-Mostaedi, R. Davarkhah, J Radioanal. Nucl. Chem. 316(1), 247 (2018)

    Article  CAS  Google Scholar 

  29. M. Szpakowska, O.B. Nagy, J. Membr. Sci. 76, 27 (1993)

    Article  CAS  Google Scholar 

  30. I.H. Gubbuk, O. Gungor, H.K. Alpoguz, M. Ersoz, M. Yılmaz, Desalination 261, 157 (2010)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Charkhi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alamdar Milani, S., Charkhi, A. & Eshghi, S. Selective transport of zirconium (IV) and niobium (V) from hydrochloric media through a bulk liquid membrane. J IRAN CHEM SOC 15, 1821–1829 (2018). https://doi.org/10.1007/s13738-018-1379-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-018-1379-y

Keywords

Navigation