Skip to main content
Log in

Extraction of Palladium(II) with Liquid Membranes Based on Tri-n-Octylammonium and Trialkylbenzylammonium Chlorides under Electrodialysis Conditions

  • Sorption and Ion Exchange Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

It is shown that in the presence of a constant electric field, PdCl42– ions may be transported through liquid membranes containing tri-n-octylammonium and trialkylbenzylammonium chlorides into dilute solutions of hydrochloric, sulfuric, perchloric, and nitric acids and into water. The effect exerted by the composition of aqueous and organic solutions, the current density of electrodialysis, the intensity of stirring, and the thickness of the liquid membrane on the transmembrane transport rate of palladium(II) was determined. It was found that the flux of PdCl42– ions increases with increasing initial metal concentration and current density, whereas an increase in the concentration of hydrochloric acid in the feed solution and the carrier concentration in the organic membrane negatively affects the extraction rate of palladium(II). It is shown that the composition of the receiving solution, the thickness of the liquid membrane, and the stirring rate have no significant effect on the rate of membrane-mediated metal extraction. The maximum flux of palladium(II) through a liquid membrane is 120 μmol m–2 s–1. The processes of membrane-mediated extraction of palladium(II) from binary hydrochloric acid mixtures containing macroimpurities of base metals were studied, and the conditions for selective extraction were determined. The maximum separation coefficients of palladium(II) ions from nickel(II), iron(III), and copper(II) are 5000, 770, and 22, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Notes

  1. Charlot, G., Quantitative Inorganic Analysis, New York: Wiley, 1957.

  2. Charlot, G., Quantitative Inorganic Analysis, New York: Wiley, 1957.

REFERENCES

  1. Ginzburg, S.I., Ezerskaya, N.A., Prokof’eva, I.V., Fedorenko, N.V., Shlenskaya, V.I., and Bel’skii, N.K., Analiticheskaya khimiya platinovykh metallov (Analytical Chemistry of Platinum Group Metals), Moscow: Nauka, 1972.

    Google Scholar 

  2. Crundwell, F.K., Ramachandran, V., Davenport, W.G., Moats, M.S., and Robinson, T.G., Extractive Metallurgy of Nickel, Cobalt, and Platinum Group Metals, London: Elsevier, 2011. https://doi.org/10.1016/C2009-0-63541-8

    Book  Google Scholar 

  3. .Barakat, M.A., Arab. J. Chem., 2011, vol. 4, pp. 361–367. https://doi.org/10.1016/j.arabjc.2010.07.019

    Article  CAS  Google Scholar 

  4. Fu, F., Wang, Q., J. Environ. Manag., 2011, vol. 92, pp. 407–418. https://doi.org/10.1016/j.jenvman.2010.11.011

    Article  CAS  Google Scholar 

  5. Tajabadi, F. and Ghambarian, M., Talanta, 2020, vol. 206, ID 120145. https://doi.org/10.1016/j.talanta.2019.120145

    Article  CAS  PubMed  Google Scholar 

  6. Liquid Membranes. Principles and Applications in Chemical Separations and Wastewater Treatment, Kislik, V.S., Ed., Oxford: Elsevier, 2010. https://doi.org/10.1016/C2009-0-18491-X

    Book  Google Scholar 

  7. Akin, I., Erdemir, S., Yilmaz, M., and Ersoz, M., J. Hazard. Mater., 2012, vols. 223–224, pp. 24–30. https://doi.org/10.1016/j.jhazmat.2012.03.043

    Article  CAS  PubMed  Google Scholar 

  8. Reddy, T.R., Meeravali, N.N., and Reddy, A.V.R., Separ. Purif. Technol., 2013, vol. 103, pp. 71–77. https://doi.org/10.1016/j.seppur.2012.10.025

    Article  CAS  Google Scholar 

  9. Masllorens, J., Roglans, A., Antico, E., and Fontas, C., Anal. Chim. Acta, 2006, vol. 560, pp. 77–83. https://doi.org/10.1016/j.aca.2005.12.052

    Article  CAS  Google Scholar 

  10. Zaghbani, A., Tayeb, R., Dhahbi, M., Hidalgo, M., Vocanson, F., Bonnamour, I., Seta, P., and Fontas, C., Separ. Purif. Technol., 2007, vol. 57, pp. 374–379. https://doi.org/10.1016/j.seppur.2007.03.025

    Article  CAS  Google Scholar 

  11. Praipruke, S., Kriausakul, K., Tantayanon, S., Int. J. Nonfer. Metal., 2012, vol. 1, pp. 13–22. https://doi.org/10.4236/ijnm.2012.12003

    Article  CAS  Google Scholar 

  12. Chaturabul, S., Wongkaew, K., and Pancharoen, U., Separ. Sci. Technol., 2013, vol. 48, no. 1, pp. 93–104. https://doi.org/10.1080/01496395.2012.673336

    Article  CAS  Google Scholar 

  13. Wongkaew, K., Pancharoen, U., Phatanasri, S., Leepipatpiboon, N., and Lothongkum, A.W., J. Ind. Eng. Chem., 2015, vol. 21, pp. 212–220. https://doi.org/10.1016/j.jiec.2014.02.027

    Article  CAS  Google Scholar 

  14. Moyo, F., and Tandlich, R., J. Biorem. Biodegr., 2014, vol. 5, no. 4, p. 1000228. https://doi.org/10.4172/2155-6199.1000228

    Article  CAS  Google Scholar 

  15. Purin, B.A., Khim. Tekhnol., 2001, no. 9, pp. 22–25.

    Google Scholar 

  16. Sadyrbaeva, T.Zh., Chem. Eng. Proc. Proc. Intensif., 2016, vol. 99, pp. 183–191. https://doi.org/10.1016/j.cep.2015.07.011

    Article  CAS  Google Scholar 

  17. Malkina, T.G. and Podchainova, V.I., J. Anal. Chem., 1964, vol. 19, no. 6, pp. 668–670. https://doi.org/10.1016/j.cep.2015.07.011

    Article  CAS  Google Scholar 

  18. Golubev, V.N. and Purin, B.A., Dokl. Akad. Nauk SSSR, 1977, vol. 232, no. 6, pp. 1340–1342. https://doi.org/10.1016/j.cep.2015.07.011

    Article  CAS  Google Scholar 

  19. Florence, T.M. and Farrar, Y.I., Analyt. Chem., 1968, vol. 40, no. 8, pp. 1200–1206. https://doi.org/10.1016/j.cep.2015.07.011

    Article  CAS  Google Scholar 

  20. .Shchukarev, S.A., Andreev, S.N., and Burkov, K.A., Dokl. Akad. Nauk SSSR, 1962, vol. 144, no. 2, pp. 371–373. https://doi.org/10.1016/j.cep.2015.07.011

    Article  CAS  Google Scholar 

  21. Sato, T. and Kato, T., J. Inorg. Nucl. Chem., 1977, vol. 39, no. 7, pp. 1205–1208. https://doi.org/10.1016/j.cep.2015.07.011

    Article  CAS  Google Scholar 

  22. .Juznic, K., Radiochim. Acta, 1971, vol. 16, no. 1, pp. 51–53. https://doi.org/10.1016/j.cep.2015.07.011

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Zh. Sadyrbaeva.

Ethics declarations

The author states that there is no conflict of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 7, pp. 937–946, January, 2021 https://doi.org/10.31857/S0044461821070161

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadyrbaeva, T.Z. Extraction of Palladium(II) with Liquid Membranes Based on Tri-n-Octylammonium and Trialkylbenzylammonium Chlorides under Electrodialysis Conditions. Russ J Appl Chem 94, 986–995 (2021). https://doi.org/10.1134/S107042722107017X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107042722107017X

Keywords:

Navigation