Skip to main content
Log in

Selective, sensitive and reliable colorimetric sensor for catechol detection based on anti-aggregation of unmodified gold nanoparticles utilizing boronic acid–diol reaction: optimization by experimental design methodology

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

A sensitive and selective colorimetric method is presented for quantitative analysis of catechol based on the unmodified gold nanoparticles (AuNPs). In the absence of catechol, the addition of 4-mercaptophenyl boronic acid (MPBA) instigates the aggregation of AuNPs by Au–S covalent binding via self-dehydration condensation of boronic acid groups and causes a noticeable color alteration of AuNPs from wine red to blue. In the presence of catechol, boronic acid–diol binding is preferred than to the self-dehydration condensation. An increase in catechol concentration alleviates AuNPs aggregation by decreasing the amount of free MPBA, and solution color changes from blue to red. Therefore, the concentration of catechol can be detected with the naked eye or by an ultraviolet–visible spectrophotometer. Central composite design and response surface methodology were executed to evaluate interactions among variables. Due to the preference for the binding of 1,2-diol to boronic acid, this method showed high selectivity for catechol determination compared to dihydroxybenzene isomers with a linear response range of 0.87–56 µmol L−1 with a detection limit of 0.41 µmol L−1. The proposed colorimetric sensing method exhibits the advantage of no necessity for surface modification of AuNPs, avoids tedious separation processes and enables rapid assays.

Graphical Abstract

A highly sensitive sensing platform for catechol was established based on the anti-aggregation of AuNPs without prior modification through a competition reaction of boronic acid–diol binding between 4-mercaptophenyl boronic acid (MPBA) and catechol against the self-dehydration condensation of MPBA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. B. Bukowska, S. Kowalska, Toxicol. Lett. 73, 152 (2004)

    Google Scholar 

  2. C.R.T. Tarley, L.T. Kubota, Anal. Chim. Acta 11, 548 (2005)

    Google Scholar 

  3. Y.G. Sun, H. Cui, Y.H. Li, X.Q. Lin, Talanta 661, 53 (2000)

    Google Scholar 

  4. T. Xie, Q. Liu, Y. Shi, J. Chromatogr. A 317, 1109 (2006)

    Google Scholar 

  5. Y. Sun, X.T. Li, C. Xu, J.L. Chen, A.M. Li, Q.X. Zhang, Environ. Sci. 584, 17 (2005)

    Google Scholar 

  6. A. Afkhami, H.A. Khatami, J. Anal. Chem. 429, 56 (2001)

    Google Scholar 

  7. Z. Lin, X. Sun, W. Hu, Y. Yin, G. Chen, Electrophoresis 993, 35 (2014)

    Google Scholar 

  8. E.L.B. Lourengo, A. Ferreira, E. Pinto, M. Yonamine, S.H.P. Farsky, Chromatographia 175, 63 (2006)

    Google Scholar 

  9. K. Giribabu, R. Suresh, R. Manigandan, A. Stephen, V. Narayanan, J. Iran. Chem. Soc. 771, 10 (2013)

    Google Scholar 

  10. M.M. Foroughi, M. Noroozifar, M. Khorasani-Motlagh, J. Iran. Chem. Soc. 1139, 12 (2015)

    Google Scholar 

  11. S. Yang, Y. Li, X. Jiang, Z. Chen, X. Lin, Sens. Actuators B Chem. 114, 774 (2006)

    Article  CAS  Google Scholar 

  12. R.P. Baldwin, T.J. Roussel, M.M. Crain, V. Bathlagunda, D.J. Jackson, J. Gullapalli, J.A. Conklin, R. Pai, J.F. Naber, K.M. Walsh, R.S. Keynton, Anal. Chem. 74, 3690 (2002)

    Article  CAS  Google Scholar 

  13. H. Cui, C. He, G. Zhao, J. Chromatogr. A 855, 171 (1999)

    Article  CAS  Google Scholar 

  14. S. Alex, A. Tiwari, J. Nanosci. Nanotechnol. 15, 1869 (2015)

    Article  CAS  Google Scholar 

  15. K. Saha, S.S. Agasti, C. Kim, X. Li, V.M. Rotello, Chem. Rev. 112, 2739 (2012)

    Article  CAS  Google Scholar 

  16. T. Lou, L. Chen, C. Zhang, Q. Kang, H. You, D. Shen, L. Chen, Anal. Methods 4, 488 (2012)

    Article  CAS  Google Scholar 

  17. C. Yuan, B. Liu, F. Liu, M.-Y. Han, Z. Zhang, Anal. Chem. 86, 1123 (2014)

    Article  CAS  Google Scholar 

  18. T. Lou, Z. Chen, Y. Wang, L. Chen, ACS Appl. Mater. Interfaces 3, 1568 (2011)

    Article  CAS  Google Scholar 

  19. L. Chen, W. Lu, X. Wanga, L. Chen, Sens. Actuators B Chem. 182, 482 (2013)

    Article  CAS  Google Scholar 

  20. M.R. Hormozi-Nezhad, S. Abbasi-Moayed, Talanta 129, 227 (2014)

    Article  CAS  Google Scholar 

  21. W. Liu, Z. Du, Y. Qian, F. Li, Sens. Actuators B Chem. 176, 927 (2013)

    Article  CAS  Google Scholar 

  22. Y.L. Li, Y.M. Leng, Y.J. Zhang, T.H. Li, Z.Y. Shen, A.G. Wu, Sens. Actuators B Chem. 200, 140 (2014)

    Article  CAS  Google Scholar 

  23. S. Takahashi, J. Anzai, Langmuir 5102, 21 (2005)

    Google Scholar 

  24. S. Li, Q. Zhou, W. Chu, W. Zhao, J. Zheng, Phys. Chem. Chem. Phys. 17638, 17 (2015)

    Google Scholar 

  25. X.Z. Bian, H.Q. Luo, N.B. Li, Bioprocess Biosyst. Eng. 971, 33 (2010)

    Google Scholar 

  26. D.D. Stephan, J. Werner, R.P. Yeater, Essential Regression and Experimental Design for Chemists and Engineers. MS Excel Add in Software Package (1998–2001)

  27. I. Burlacov, J. Jirkovský, M. Müller, R.B. Heimann, Surf. Coat. Technol. 201, 255 (2006)

    Article  CAS  Google Scholar 

  28. G. Frens, Nat. Phys. Sci. 241, 20 (1973)

    Article  CAS  Google Scholar 

  29. K.C. Grabar, R.G. Freeman, M.B. Hommer, M.J. Natan, Anal. Chem. 67, 735 (1995)

    Article  CAS  Google Scholar 

  30. S. Liu, Z. Du, P. Li, F. Li, Biosens. Bioelectron. 35, 443 (2012)

    Article  CAS  Google Scholar 

  31. Y. Kong, X.H. Chen, W.C. Wang, Z.D. Chen, Anal. Chim. Acta 688, 203 (2011)

    Article  CAS  Google Scholar 

  32. W. Liu, L. Wu, X. Zhang, J. Chen, Anal. Methods 6, 718 (2014)

    Article  CAS  Google Scholar 

  33. S.K. Ozoner, M. Yalvac, E. Erhan, Curr. Appl. Phys. 10, 323 (2010)

    Article  Google Scholar 

  34. L. Wang, P.F. Huang, J.Y. Bai, H.J. Wang, L.Y. Zhang, Y.Q. Zhao, Microchim. Acta 158, 151 (2007)

    Article  CAS  Google Scholar 

  35. Z. Xu, X. Chen, X.H. Qu, S.J. Dong, Electroanalysis 16, 684 (2004)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Bahram.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keshvari, F., Bahram, M. Selective, sensitive and reliable colorimetric sensor for catechol detection based on anti-aggregation of unmodified gold nanoparticles utilizing boronic acid–diol reaction: optimization by experimental design methodology. J IRAN CHEM SOC 14, 977–984 (2017). https://doi.org/10.1007/s13738-017-1047-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-017-1047-7

Keywords

Navigation