Skip to main content
Log in

A new peptide nucleotide acid biosensor for electrochemical detection of single nucleotide polymorphism in duplex DNA via triplex structure formation

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

In this paper, we report a new PNA biosensor for electrochemical detection of point mutation or single nucleotide polymorphism (SNP) in p53 gene corresponding oligonucleotide based on PNA/ds-DNA triplex formation following hybridization of PNA probe with double-stranded DNA (ds-DNA) sample without denaturing the ds-DNA into single-stranded DNA (ss-DNA). As p53 gene is mutated in many human tumors, this research is useful for cancer therapy and genomic study. In this approach, methylene blue (MB) is used for electrochemical signal generation and the interaction between MB and oligonucleotides is studied by differential pulse voltammety (DPV). Probe-modified electrode is prepared by self-assembled monolayer (SAM) formation of thiolated PNA molecules on the surface of Au electrode. A significant increase in the reduction signal of MB following hybridization of the probe with the complementary double-stranded oligonucleotide (ds-oligonucleotide) confirms the function of the biosensor. The selectivity of the PNA sensor is investigated by non-complementary ds-oligonucleotides and the results support the ability of the sensor to detect single-base mismatch directly on ds-oligonucleotide. The influence of probe and ds-DNA concentrations on the effective discrimination against complementary sequence and point mutation is studied and the concentration of 10−6 M is selected as appropriate concentration. Diagnostic performance of the biosensor is described and the detection limit is found to be 4.15 × 10−12 M.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. Tavakoli, H. Ghourchian, J. Iran. Chem. Soc. 7(2), 322 (2010)

    Article  CAS  Google Scholar 

  2. I.E. Tothill, Semin. Cell Dev. Biol. 20, 55 (2009)

    Article  CAS  Google Scholar 

  3. M. Shourian, H. Ghourchian, H.-A. Rafiee-Pour, H. Tavakoli, J. Iran. Chem. Soc. 7(4), 900 (2010)

    Article  CAS  Google Scholar 

  4. S.H. Kazemi, K. Khajeh, J. Iran. Chem. Soc. 8, S152 (2011)

    Article  CAS  Google Scholar 

  5. M. Pita, J.M. Abad, C. Vaz-Dominguez, C. Briones, E. Mateo-Martí, J.A. Martín-Gago, M.d.P. Morales, V.M. Fernández, J. Coll. Inter. Sci. 321, 484 (2008)

    Article  CAS  Google Scholar 

  6. K. Kröger, A. Jung, S. Reder, G. Gauglitz, Anal. Chim. Acta 469(1), 37 (2002)

    Article  Google Scholar 

  7. D. Yao, J. Kim, F. Yu, P.E. Nielsen, E.-K. Sinner, W. Knoll, Biophysical. J. 88(4), 2745 (2005)

    Article  CAS  Google Scholar 

  8. P. Wittung-Stafshede, M. Rodahl, B. Kasemo, P. Nielsen, B. Norden, Coll. Surfaces A 174(1–2), 269 (2000)

    Article  CAS  Google Scholar 

  9. S.N. Azizi, S. Ranjbar, J.B. Raoof, E. Hamidi-Asl, Sens. Actuators B 181, 319 (2013)

    Google Scholar 

  10. H.-W. Gao, P. Qin, C. Lin, Z.-M. Shang, W. Sun, J. Iran. Chem. Soc. 7(1), 119 (2010)

    Article  CAS  Google Scholar 

  11. E. Hamidi-Asl, I. Palchetti, M. Mascini, Lecture notes in electrical engineering. Sens. Microsyst. 109(1), 37 (2012)

  12. M.R. Majidi, S. Gholizadeh, M.S. Hejazi, J. Iran. Chem. Soc. 8(1), 59 (2011)

    Article  CAS  Google Scholar 

  13. F. Bettazzi, E. Hamid-Asl, C.L. Esposito, C. Quintavalle, N. Formisano, S. Laschi, S. Catuogno, M. Iaboni, G. Marrazza, M. Mascini, L. Cerchia, V. De Franciscis, G. Condorelli, I. Palchetti, Anal. Bioanal. Chem. 405(2–3), 1025 (2013)

    Google Scholar 

  14. S.Z. Mousavi-Sani, J.B. Raoof, R. Ojani, E. Hamidi-Asl, J. Chin. Chem. Soc., (2013) In Press

  15. J.B. Raoof, M.S. Hejazi, R. Ojani, E. Hamidi-Asl, Int. J. Electrochem. Sci. 4, 1436 (2009)

    CAS  Google Scholar 

  16. M.H. Pournaghi-Azar, M.S. Hejazi, E. Alipour, Electroanalysis 19, 466 (2007)

    Article  CAS  Google Scholar 

  17. M.H. Pournaghi-Azar, E. Alipour, S. Zununi, H. Froohandeh, M.S. Hejazi, Biosens. Bioelectron. 24, 524 (2008)

    Article  CAS  Google Scholar 

  18. M.S. Hejazi, M.H. Pournaghi-Azar, E. Alipour, F. Karimi, Biosens. Bioelectron. 23, 1588 (2008)

    Article  CAS  Google Scholar 

  19. E. Alipour, M.H. Pournaghi-Azar, M. Parvizi, S.M. Golabi, M.S. Hejazi, Electrochim. Acta 56, 1925 (2011)

    Article  CAS  Google Scholar 

  20. E. Hamidi-Asl, E. Hasheminejad, M. Mascini, Talanta (2013) In Press

  21. M.V. Del Pozo, C. Alonso, F. Pariente, E. Lorenzo, Biosens. Bioelectron. 20, 1549 (2005)

    Article  Google Scholar 

  22. M.S. Hejazi, E. Alipour, M.H. Pournaghi-Azar, Talanta 71, 1734 (2007)

    Article  CAS  Google Scholar 

  23. M.S. Hejazi, J.B. Raoof, R. Ojani, S.M. Golabi, E. Hamidi-Asl, Bioelectrochem. 78, 141 (2010)

    Article  CAS  Google Scholar 

  24. M.H. Pournaghi-Azar, M.S. Hejazi, E. Alipour, Anal. Chim. Acta 570, 144 (2006)

    Article  CAS  Google Scholar 

  25. J.B. Raoof, R. Ojani, M. Ebrahimi, E. Hamidi-Asl, Chin. J. Chem. 29(11), 2451 (2011)

    Article  Google Scholar 

  26. Q. Chen, Z. Bian, M. Chen, X. Hua, C. Yaoa, H. Xia, H. Kuang, X. Zhang, J. Huang, G. Cai, W. Fu, Biosens. Bioelectron. 24, 3412 (2009)

    Article  CAS  Google Scholar 

  27. J. Zhang, J. Hua Chen, R. Chun Chen, G. Nan Chen, F. Fu Fu, Biosens. Bioelectron. 25, 815 (2009)

    Article  CAS  Google Scholar 

  28. B. Sehatnia, F. Golabi, M.H. Pournaghi-Azar, R.E. Sabzi, M.S. Hejazi, J. Iran. Chem. Soc. 8(1), 115 (2011)

    Article  CAS  Google Scholar 

  29. P. Paulasova, F. Pellestor, Annales de Génétique 47, 349 (2004)

    Article  Google Scholar 

  30. R.P. Singh, B. Oh, J. Choi, Bioelectrochem. 79, 153 (2010)

    Article  CAS  Google Scholar 

  31. C. Culmsee, M.P. Mattson, Biochem. Biophys. Res. Commun. 331, 761 (2005)

    Article  CAS  Google Scholar 

  32. Y. Levav-Cohen, Z. Goldberg, V. Zuckerman, T. Grossman, S. Haupt, Y. Haupt, Biochem. Biophys. Res. Commun. 331, 737 (2005)

    Article  CAS  Google Scholar 

  33. H. Kuhn, V.V. Demidov, J.M. Coull, M.J. Fiandaca, B.D. Gildea, M.D. Frank-Kamenetskii, J. Am. Chem. Soc. 124, 1097 (2002)

    Article  CAS  Google Scholar 

  34. E.S. Baker, J.W. Hong, B.S. Gaylord, G.C. Bazan, M.T. Bowerset, J. Am. Chem. Soc. 128, 8484 (2006)

    Article  CAS  Google Scholar 

  35. A. Patterson, F. Caprio, A. ValleeBelisle, D. Moscone, K.W. Plaxco, G. Palleschi, F. Ricci, Anal. Chem. 82, 9109 (2010)

    Article  CAS  Google Scholar 

  36. Y. Xiao, X. Lou, T. Uzawa, K.J.I. Plakos, K.W. Plaxco, H. Tom Soh, J. Am. Chem. Soc. 131, 15311 (2009)

    Article  CAS  Google Scholar 

  37. J.B. Raoof, R. Ojani, S.M. Golabi, E. Hamidi-Asl, M.S. Hejazi, Sens. Actuators, B 157, 195 (2011)

    Article  CAS  Google Scholar 

  38. M.D. Frank-Kamenetskii, S.M. Mirkin, Ann. Rev. Biochem. 64, 65 (1995)

    Article  CAS  Google Scholar 

  39. A. Ono, C. Chen, L. Kan, Biochemistry 30, 9914 (1991)

    Article  CAS  Google Scholar 

  40. U. Koppelhus, P.E. Nielsen, Adv. Drug Deliv. Rev. 55, 267 (2003)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jahan Bakhsh Raoof.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamidi-Asl, E., Raoof, J.B., Ojani, R. et al. A new peptide nucleotide acid biosensor for electrochemical detection of single nucleotide polymorphism in duplex DNA via triplex structure formation. J IRAN CHEM SOC 10, 1075–1083 (2013). https://doi.org/10.1007/s13738-013-0254-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-013-0254-0

Keywords

Navigation