Skip to main content
Log in

A single nucleotide polymorphism electrochemical sensor based on DNA-functionalized Cd-MOFs-74 as cascade signal amplification probes

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An ultrasensitive electrochemical sensor has been constructed for the detection of single nucleotide polymorphisms (SNPs) based on DNA-functionalized Cd-MOFs-74 as cascade signal amplification probe under enzyme-free conditions. Interestingly, the introduction of an auxiliary probe did not disturb the detection of SNP targets, but could bind more Cd-MOFs-74 signal elements to enhance the different pulse voltammetry electrochemical signal 2~3 times as compared to sensing system without auxiliary probe, which obviously improves the sensitivity of the proposed sensor. Experimental results taking p53 tumor suppressor gene as SNP model demonstrated that the proposed method can be employed to sensitively and selectively detect target p53 gene fragment with a linear response ranging from 0.01 to 30 pmol/L (detection limit of 6.3 fmol/L) under enzyme-free conditions. Utilizing this strategy, the ultrasensitive SNP electrochemical sensor is a promising tool for the determination  of SNPs in biomedicine.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Duan X, Liu L, Feng F, Wang S (2010) Cationic conjugated polymers for optical detection of DNA methylation, lesions, and single nucleotide polymorphisms. Acc Chem Res 43:260–270

    Article  CAS  PubMed  Google Scholar 

  2. Cheung KM, Abendroth JM, Nakatsuka N, Zhu B, Yang Y, Andrews AM, Weiss PS (2020) Detecting DNA and RNA and differentiating single-nucleotide variations via field-effect transistors. Nano Lett 20:5982–5990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Du Y, Dong S (2017) Nucleic acid biosensors: recent advances and perspectives. Anal Chem 89:189–215

    Article  CAS  PubMed  Google Scholar 

  4. Abi A, Safavi A (2019) Targeted detection of single-nucleotide variations: progress and promise. ACS Sens 4:792–807

    Article  CAS  PubMed  Google Scholar 

  5. Wang CC, Chen CA, Jong YJ, Kou HS (2018) Specific gene capture combined with restriction-fragment release for directly fluorescent genotyping of single-nucleotide polymorphisms in diagnosing spinal muscular atrophy. Anal Chem 90:11599–11606

    Article  CAS  PubMed  Google Scholar 

  6. Kausar A, Osman EA, Gadzikwa T, Gibbs-Davis JM (2016) The presence of a 5′-abasic lesion enhances discrimination of single nucleotide polymorphisms while inducing an isothermal ligase chain reaction. Analyst 141:4272–4277

    Article  CAS  PubMed  Google Scholar 

  7. Qiu LP, Wu ZS, Shen GL, Yu RQ (2011) Highly sensitive and selective bifunctional oligonucleotide probe for homogeneous parallel fluorescence detection of protein and nucleotide sequence. Anal Chem 83:3050–3057

    Article  CAS  PubMed  Google Scholar 

  8. Feng Y, Sun F, Wang N, Lei J, Ju H (2017) Ru(bpy)32+ incorporated luminescent polymer dots: double-enhanced electrochemiluminescence for detection of single-nucleotide polymorphism. Anal Chem 89:7659–7666

    Article  CAS  PubMed  Google Scholar 

  9. Gu C, Kong X, Liu X, Gai P, Li F (2019) Enzymatic biofuel-cell-based self-powered biosensor integrated with DNA amplification strategy for ultrasensitive detection of single-nucleotide polymorphism. Anal Chem 91:8697–8704

    Article  CAS  PubMed  Google Scholar 

  10. Zhang XR, Zhang Y, Chen FT, Li Y, Zhang SS (2016) Visual detection of single-nucleotide polymorphisms and DNA methyltransferase based on cation-exchange of CuS nanoparticles and click chemistry of functionalized gold nanoparticles. Chem Commun 52:13261–13264

    Article  CAS  Google Scholar 

  11. Zhao W, Li H, Tang Y, Liu M, Wang S, Yu R (2019) Fluorometric determination of the p53 cancer gene using strand displacement amplification on gold nanoparticles. Microchim Acta 186:517

    Article  Google Scholar 

  12. Hu K, Zhong T, Huang Y, Chen Z, Zhao S (2015) Graphitic carbon nitride nanosheet-based multicolour fluorescent nanoprobe for multiplexed analysis of DNA. Microchim Acta 182:949–955

    Article  CAS  Google Scholar 

  13. Chen M, Su H, Mao L, Guo M, Tang J (2017) Highly sensitive electrochemical DNA sensor based on the use of three-dimensional nitrogen-doped graphene. Microchim Acta 185:51

    Article  Google Scholar 

  14. Zhou HC, Long JR, Yaghi OM (2012) Introduction to metal–organic frameworks. Chem Rev 112:673–674

    Article  CAS  PubMed  Google Scholar 

  15. Zhang W, Bu A, Ji Q, Min L, Zhao S, Wang Y, Chen J (2019) pKa-Directed incorporation of phosphonates into MOF-808 via ligand exchange: stability and adsorption properties for uranium. ACS Appl Mater Interfaces 11:33931–33940

    Article  CAS  PubMed  Google Scholar 

  16. Li DL, Zhang X, Ma Y, Deng Y, Hu R, Yang YH (2018) Preparation of an OTA aptasensor based on a metal–organic framework. Anal Methods 10:3273–3279

    Article  CAS  Google Scholar 

  17. Thomas-Hillman I, Stevens LA, Lange M, Möllmer J, Lewis W, Dodds C, Kingman SW, Laybourn A (2019) Developing a sustainable route to environmentally relevant metal–organic frameworks: ultra-rapid synthesis of MFM-300 (Al) using microwave heating. Green Chem 21:5039–5045

    Article  CAS  Google Scholar 

  18. Zhang R, Liu Y, Wang Z, Wang P, Zheng Z, Qin X, Zhang X, Dai Y, Whangbo MH, Huang B (2019) Selective photocatalytic conversion of alcohol to aldehydes by singlet oxygen over Bi-based metal-organic frameworks under UV–vis light irradiation. Appl Catal B 254:463–470

    Article  CAS  Google Scholar 

  19. Simon-Yarza T, Mielcarek A, Couvreur P, Serre C (2018) Nanoparticles of metal-organic frameworks: on the road to in vivo efficacy in biomedicine. Adv Mate 30:1707365

    Article  Google Scholar 

  20. Zhang L, Liu C, Gao Y, Li Z, Xing J, Ren W, Zhang L, Li A, Lu G, Wu A, Zeng L (2018) ZD2-engineered gold nanostar@metal-organic framework nanoprobes for T1-weighted magnetic resonance imaging and photothermal therapy specifically toward triple-negative breast cancer. Adv Healthcare Mater 7:1801144

    Article  Google Scholar 

  21. He K, Li Z, Wang L, Fu Y, Quan H, Li Y, Wang X, Gunasekaran S, Xu X (2019) A water-stable luminescent metal–organic framework for rapid and visible sensing of organophosphorus pesticides. ACS Appl Mater Interfaces 11:26250–26260

    Article  CAS  PubMed  Google Scholar 

  22. Li X, Yang XY, Sha JQ, Han T, Du CJ, Sun YJ, Lan YQ (2019) POMOF/SWNT nanocomposites with prominent peroxidase-mimicking activity for l-cysteine “On–Off Switch” colorimetric biosensing. ACS Appl Mater Interfaces 11:16896–16904

    Article  CAS  PubMed  Google Scholar 

  23. Rieger M, Wittek M, Scherer P, Löbbecke S, Müller-Buschbaum K (2018) Preconcentration of nitroalkanes with archetype metal–organic frameworks (MOFs) as concept for a sensitive sensing of explosives in the gas phase. Adv Funct Mater 28:1704250

    Article  Google Scholar 

  24. Zhang G, Shan D, Dong H, Cosnier S, Al-Ghanim KA, Ahmad Z, Mahboob S, Zhang X (2018) DNA-mediated nanoscale metal–organic frameworks for ultrasensitive photoelectrochemical enzyme-free immunoassay. Anal Chem 90:12284–12291

    Article  CAS  PubMed  Google Scholar 

  25. Valekar AH, Batule BS, Kim MI, Cho KH, Hong DY, Lee UH, Chang JS, Park HG, Hwang YK (2018) Novel amine-functionalized iron trimesates with enhanced peroxidase-like activity and their applications for the fluorescent assay of choline and acetylcholine. Biosens Bioelectron 100:161–168

    Article  CAS  PubMed  Google Scholar 

  26. Jiang Z, Gao P, Yang L, Huang C, Li Y (2015) Facile in situ synthesis of silver nanoparticles on the surface of metal–organic framework for ultrasensitive surface-enhanced raman scattering detection of dopamine. Anal Chem 87:12177–12182

    Article  CAS  PubMed  Google Scholar 

  27. Hira SA, Nallal M, Park KH (2019) Fabrication of PdAg nanoparticle infused metal-organic framework for electrochemical and solution-chemical reduction and detection of toxic 4-nitrophenol. Sensors Actuators B 298:126861

    Article  CAS  Google Scholar 

  28. Lu M, Deng Y, Luo Y, Lv J, Li T, Xu J, Chen SW, Wang J (2019) Graphene aerogel–metal–organic framework-based electrochemical method for simultaneous detection of multiple heavy-metal ions. Anal Chem 91:888–895

    Article  CAS  PubMed  Google Scholar 

  29. Chang J, Wang X, Wang J, Li H, Li F (2019) Nucleic acid-functionalized metal–organic framework-based homogeneous electrochemical biosensor for simultaneous detection of multiple tumor biomarkers. Anal Chem 91:3604–3610

    Article  CAS  PubMed  Google Scholar 

  30. Liu TZ, Hu R, Zhang X, Zhang KL, Liu Y, Zhang XB, Bai RY, Li D, Yang YH (2016) Metal–organic framework nanomaterials as novel signal probes for electron transfer mediated ultrasensitive electrochemical immunoassay. Anal Chem 88:12516–12523

    Article  CAS  PubMed  Google Scholar 

  31. Xie FT, Zhao X, Chi KN, Yang T, Hu R, Yang YH (2020) Fe-MOFs as signal probes coupling with DNA tetrahedral nanostructures for construction of ratiometric electrochemical aptasensor. Anal Chim Acta 1135:123–131

    Article  CAS  PubMed  Google Scholar 

  32. Yang T, Li CM, He JH, Chen B, Li YF, Huang CZ (2018) Ratiometrically fluorescent electrospun nanofibrous film as a Cu2+-mediated solid-Phase immunoassay platform for biomarkers. Anal Chem 90:9966–9974

    Article  CAS  PubMed  Google Scholar 

  33. Yang T, Hou P, Zheng LL, Zhan L, Gao PF, Li YF, Huang CZ (2017) Surface-engineered quantum dots/electrospun nanofibers as a networked fluorescence aptasensing platform toward biomarkers. Nanoscale 9:17020–17028

    Article  CAS  PubMed  Google Scholar 

  34. Díaz-García M, Sánchez-Sánchez M (2014) Synthesis and characterization of a new Cd-based metal-organic framework isostructural with MOF-74/CPO-27 materials. Microporous Mesoporous Mater 190:248–254

    Article  Google Scholar 

  35. Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10:569–581

    Article  CAS  PubMed  Google Scholar 

  36. McDonald MP, Morozov Y, Hodak JH, Kuno M (2015) Spectroscopy and microscopy of graphene oxide and reduced graphene oxide. Springer International Publishing 2:29–60

  37. Ma Y, Yang J, Yang T, Deng Y, Gu M, Wang M, Hu R, Yang Y (2020) Electrochemical detection of C-reactive protein using functionalized iridium nanoparticles/graphene oxide as a tag. RSC Adv 10:9723–9729

    Article  CAS  Google Scholar 

  38. Yang L, Tao Y, Yue G, Li R, Qiu B, Guo L, Lin Z, Yang HH (2016) Highly selective and sensitive electrochemiluminescence biosensor for p53 DNA sequence based on nicking endonuclease assisted target recycling and hyperbranched rolling circle amplification. Anal Chem 88:5097–5103

    Article  CAS  PubMed  Google Scholar 

  39. Zhao JY, Huo DQ, Geng XT, Bao J, Hou JZ, Shui ZF, Yang HS, Qi YL, Hu YA, Yang M, Hou CJ (2021) 3D MoS2-AuNPs carbon paper probe for ultrasensitive detection and discrimination of p53 gene. Sensors Actuators B 332:129480

    Article  CAS  Google Scholar 

  40. Hu J, Jiang YZ, Wu LL, Wu Z, Bi Y, Wong G, Qiu X, Chen J, Pang DW, Zhang ZL (2017) Dual-signal readout nanospheres for rapid point-of-care detection of ebola virus glycoprotein. Anal Chem 89:13105–13111

    Article  CAS  PubMed  Google Scholar 

  41. Wang HH, Li MJ, Tu YP, Wang HJ, Chai YQ, Li ZH, Yuan R (2021) Fullerenol as a photoelectrochemical nanoprobe for discrimination and ultrasensitive detection of amplification-free single-stranded DNA. Biosens Bioelectron 173:112802

    Article  CAS  Google Scholar 

  42. Zhu C, Zeng Z, Li H, Li F, Fan C, Zhang H (2013) Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. J Am Chem Soc 135:5998–6001

    Article  CAS  PubMed  Google Scholar 

  43. Zhao M, Wang Y, Ma Q, Huang Y, Zhang X, Ping J, Zhang Z, Lu Q, Yu Y, Xu H, Zhao Y, Zhang H (2015) Ultrathin 2D metal–organic framework nanosheets. Adv Mater 27:7372–7378

    Article  CAS  PubMed  Google Scholar 

  44. Dong H, Lu B, Wang J, Xie J, Liu K, Jia L, Zhuang J (2019) Polymerization-driven successive collapse of DNA dominoes enabling highly sensitive cancer gene diagnosis. Chem Commun 55:14797–14800

    Article  CAS  Google Scholar 

  45. Luo Z, Xu Y, Huang Z, Chen J, Wang X, Li D, Li Y, Duan Y (2020) A rapid, adaptative DNA biosensor based on molecular beacon-concatenated dual signal amplification strategies for ultrasensitive detection of p53 gene and cancer cells. Talanta 210:120638

    Article  CAS  PubMed  Google Scholar 

  46. Peng Y, Huang Y, Zhu Y, Chen B, Wang L, Lai Z, Zhang Z, Zhao M, Tan C, Yang N, Shao F, Han Y, Zhang H (2017) Ultrathin two-dimensional covalent organic framework nanosheets: preparation and application in highly sensitive and selective DNA detection. J Am Chem Soc 139:8698–8704

    Article  CAS  PubMed  Google Scholar 

  47. Zhang C, Zhang H, Wu P, Zhang X, Liu J (2020) Suppressing the background activity of hemin for boosting the sensitivity of DNAzyme-based biosensors by SYBR Green I. Biosens Bioelectron 169:112603

    Article  CAS  PubMed  Google Scholar 

  48. Li C, Li G, Liu H, Xiao Z, Jin M, Yuan C (2020) A novel gold nanoparticles decorated magnetic microbead-based molecular beacon for DNA multiplexing detection by flow cytometry. Anal Chim Acta 1110:19–25

    Article  CAS  PubMed  Google Scholar 

  49. Wang D, Tang W, Wu X, Wang X, Chen G, Chen Q, Li N, Liu F (2012) Highly selective detection of single-nucleotide polymorphisms using a quartz crystal microbalance biosensor based on the toehold-mediated strand displacement reaction. Anal Chem 84:7008–7014

    Article  CAS  PubMed  Google Scholar 

  50. Raoof JB, Ojani R, Golabi SM, Hamidi-Asl E, Hejazi MS (2011) Preparation of an electrochemical PNA biosensor for detection of target DNA sequence and single nucleotide mutation on p53 tumor suppressor gene corresponding oligonucleotide. Sensors Actuators B 157:195–201

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (NSFC, no. 21765026 and 21864026), Scientific Research Foundation Project of Yunnan Provincial Department of Education (no. 2019J0066), and PhD Scientific Research Foundation of Yunnan Normal University (no. 2018ZB001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tong Yang, Rong Hu or Yun Hui Yang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 240 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J.L., Ma, Y.C., Yang, T. et al. A single nucleotide polymorphism electrochemical sensor based on DNA-functionalized Cd-MOFs-74 as cascade signal amplification probes. Microchim Acta 188, 266 (2021). https://doi.org/10.1007/s00604-021-04924-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04924-9

Keywords

Navigation