Skip to main content
Log in

Magnetic La0.7Sr0.3MnO3 nanoparticles: recyclable and efficient catalyst for ultrasound-accelarated synthesis of 4H-chromenes, and 4H-pyrano[2,3-c]pyrazoles

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Nano magnetic complex lanthanum strontium magnesium oxide La0.7Sr0.3MnO3 (LSMO) has been explored as an efficient and recyclable catalyst to effect the one-pot three-component condensation reactions between aromatic aldehydes, malononitrile and 5,5-dimethyl-cyclohexane-1,3-dione, or 3-methyl-1-phenyl-2-pyrazolin-5-one in EtOH under ultrasound irradiation conditions. 2-Amino-5-oxo-5,6,7,8-tetrahydro-4H-chromenes and 1,4-dihydropyrano[2,3-c]pyrazol-5-yl cyanides were respectively synthesized from these reactions in high yields. This nano-catalyst can be easily recovered via magnetic concentration and reused without any significant drop in its catalytic activity.

Graphical abstract

Magnetic La0.7Sr0.3MnO3 nanoparticles have been explored to efficiently catalyze the one-pot condensation of aromatic aldehydes, malononitrile and 5,5-dimethyl-cyclohexane-1,3-dione, or 3-methyl-1-phenyl-2-pyrazolin-5-one in EtOH under ultrasound-irradiation conditions. As a result, 2-Amino-5-oxo-5,6,7,8-tetrahydro-4H-chromenes and 1,4-dihydropyrano[2,3-c]pyrazol-5-yl cyanides were produced respectively in excellent yields. High efficiency, easy workup, high yields, use of cost-effective and non toxic catalyst are the main merits of this method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2

Similar content being viewed by others

References

  1. G.M. Scheuermann, L. Rumi, P. Steure, W. Bannwarth, R. Mulhaupt, J. Am. Chem. Soc. 131, 8262 (2009)

    Article  CAS  Google Scholar 

  2. N.R. Shiju, V.V. Guliants, Appl. Catal. A: Gen. 356, 1 (2009)

    Article  CAS  Google Scholar 

  3. N. Koukabi, E. Kolvari, A. Khazaei, M.A. Zolfigol, B.S. Shaghasemi, H.R. Khavasi, Chem. Commun. 47, 9230 (2011)

    Article  CAS  Google Scholar 

  4. R. Singh, R.M. Kisling, M.A. Letellier, S.P. Nolan, J. Org. Chem. 69, 209 (2004)

    Article  CAS  Google Scholar 

  5. P.T. Anastas, L.B. Bartlett, M.M. Kirchhof, T.C. Williamson, Catal. Today 55, 11 (2000)

    Article  CAS  Google Scholar 

  6. A. Yamashita, F. Uejo, T. Yoda, T. Uchida, Y. Tanamura, T. Yamashita, N. Teramae, Nat. Mater. 3, 337 (2004)

    Article  Google Scholar 

  7. P. Claus, A. Bruckner, C. Mohr, H. Hofmeister, J. Am. Chem. Soc. 122, 11430 (2000)

    Article  CAS  Google Scholar 

  8. K. Tanabe, Solid Acids and Bases (Academic Press, New York, 1970)

    Google Scholar 

  9. H. Itoh, S. Utamapanya, J.V. Stark, K.J. Klabunde, J.R. Schlup, Chem. Mater. 5, 71 (1993)

    Article  CAS  Google Scholar 

  10. J. Guzman, B.C. Gates, Nano Lett. 1, 689 (2001)

    Article  CAS  Google Scholar 

  11. M.R. Hoffman, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95, 69 (1995)

    Article  Google Scholar 

  12. D. Astruc, F. Lu, J.R. Aranzaes, Angew. Chem. Int. Ed. 44, 7852 (2005)

    Article  CAS  Google Scholar 

  13. A. Saxena, A. Kumar, S. Mozumdar, J. Mol. Catal. A 269, 35 (2007)

    Article  CAS  Google Scholar 

  14. A.T. Bell, Science 299, 1688 (2003)

    Article  CAS  Google Scholar 

  15. B.M. Choudary, M.L. Kantam, K.V.S. Ranganath, K. Mahender, J. Am. Chem. Soc. 126, 3396 (2004)

    Article  CAS  Google Scholar 

  16. B.M. Choudary, R.S. Mulukutla, K.J. Klabunde, J. Am. Chem. Soc. 125, 2020 (2003)

    Article  CAS  Google Scholar 

  17. M.J. Aliaga, D.J. Ramon, M. Yus, Org. Biomol. Chem. 8, 43 (2010)

    Article  CAS  Google Scholar 

  18. T.Q. Zeng, W.W. Chen, C.M. Cirtiu, A. Moores, G.H. Song, C.J. Li, Green Chem. 12, 570 (2010)

    Article  CAS  Google Scholar 

  19. K.J. Klabunde, R. Mulukutla, Nanoscale Materials in Chemistry, ed. by K.J. Klabunde (Wiley Interscience, New York, 2001), p. 223.

  20. A. Saxena, A. Kumar, S. Mozumdar, J. Mol. Catal. A: Chem. 269, 35 (2007)

    Article  CAS  Google Scholar 

  21. E. Deoliveira, A.G.S. Prado, J. Mol. Catal. A: Chem. 271, 63 (2007)

    Article  CAS  Google Scholar 

  22. A.M. Raspolli Galletti, C. Antonetti, A.M. Venezia, G. Giambastiani, Appl. Catal. A: Gen. 386, 124 (2010)

    Article  Google Scholar 

  23. S.S. Davis, Trends Biotechnol. 15, 217 (1997)

    Article  CAS  Google Scholar 

  24. H.Y. Hwang, S.W. Cheong, N.P. Ong, B. Batlogg, Phys. Rev. Lett. 77, 2041 (1996)

    Article  CAS  Google Scholar 

  25. A. Chainani, M. Mathew, D.D. Sarma, Phys. Rev. B 47, 15397 (1993)

    Article  CAS  Google Scholar 

  26. J.M. De Teresa, C. Marquina, D. Serrate, R. Fernandez-Pacheco, L. Morellon, P.A. Algarabel, M.R. Ibarra, Int. J. Nanotechnol. 2, 3 (2005)

    Google Scholar 

  27. A. Pankhurst, J. Connolly, S.K. Jones, J. Dobson, J. Phys. D 36, R167 (2003)

    Article  CAS  Google Scholar 

  28. K.S. Suslick, Sonochemistry and Sonoluminiscence in Encyclopedia of Physical Science and Technology (Academic Press, San Diego, 2001)

    Google Scholar 

  29. T.J. Mason, Ultrason. Sonochem. 14, 476 (2007)

    Article  CAS  Google Scholar 

  30. H.J. Lim, G. Keum, S.B. Kang, B.Y. Chung, Y. Kim, Tetrahedron Lett. 39, 4367 (1998)

    Article  CAS  Google Scholar 

  31. L.L. Andreani, E. Lapi, Bull. Chim. Farm. 99, 583 (1960)

    Google Scholar 

  32. S. Gao, C.H. Tsai, C. Tseng, C.F. Yao, Tetrahedron 64, 9143 (2008)

    Article  CAS  Google Scholar 

  33. D. Kumar, V.B. Reddy, S. Sharad, U. Dube, S. Kapur, Eur. J. Med. Chem. 44, 3805 (2009)

    Article  CAS  Google Scholar 

  34. S.G. Kuo, L.J. Huang, H. Nakamura, J. Med. Chem. 27, 539 (1984)

    Article  CAS  Google Scholar 

  35. D. Shi, J. Mou, Q. Zhuang, L. Niu, N. Wu, X. Wang, Synth. Commun. 34, 4557 (2004)

    Article  CAS  Google Scholar 

  36. T.S. Jin, A.Q. Wang, Z.L. Cheng, J.S. Zhang, T. Li, Synth. Commun. 35, 137 (2005)

    Article  CAS  Google Scholar 

  37. S.B. Guo, S.X. Wang, J.T. Li, Synth. Commun. 37, 2111 (2007)

    Article  CAS  Google Scholar 

  38. S. Hatakeyama, N. Ochi, H. Numata, S. Takano, J. Chem. Soc. Chem. Commun. 1202 (1988)

  39. J.F. Zhou, S.J. Tu, Y. Gao, M. Qi, Chinese J. Org. Chem. 21, 742 (2001)

    CAS  Google Scholar 

  40. G. Mohammadi-Ziarani, A. Abbasi, A. Badiei, Z. Aslani, E J. Chem. 8, 293 (2011)

    Article  Google Scholar 

  41. T.S. Jin, A.Q. Wang, F. Shi, L.S. Han, L.B. Liu, T.S. Li, ARKIVOC xiv 78 (2006).

  42. S.V. Shinde, W.N. Jadhav, J.M. Kondre, S.V. Gampawar, N.N. Karade, J. Chem. Res. 278 (2008).

  43. M.M. Heravi, A. Ghods, F. Derikvand, K. Bakhtiari, F.F. Bamoharram, J. Iran. Chem. Soc. 7, 615 (2010)

    Article  CAS  Google Scholar 

  44. J.F. Zhou, S.J. Tu, Y. Gao, M. Ji, Russ. J. Org. Chem. 21, 742 (2001)

    CAS  Google Scholar 

  45. F. Lehmann, M. Holm, S. Laufer, J. Comb. Chem. 10, 364 (2008)

    Article  CAS  Google Scholar 

  46. H. Mehrabi, H. Abusaidi, J. Iran. Chem. Soc. 7, 890 (2010)

    Article  CAS  Google Scholar 

  47. H. Mehrabi, N. Kamali, J. Iran. Chem. Soc. 9, 599 (2012)

    Article  CAS  Google Scholar 

  48. H.R. Shaterian, A.R. Oveisi, J. Iran. Chem. Soc. 8, 545 (2011)

    Article  CAS  Google Scholar 

  49. H. Sheibani, M. Babaie, Synth. Commun. 40, 257 (2010)

    Article  CAS  Google Scholar 

  50. T.-S. Jin, R.-Q. Zhao, T.-S. Li, ARKIVOC xi 176 (2006).

  51. A. Azarifar, P.A. Yadav, A.K. Chawla, J.P. Jog, S.I. Patil, R. Chandra, S.B. Ogale, Adv. Sci. Lett. 4, 1 (2011)

    Article  Google Scholar 

  52. D. Azarifar, R. Nejat-Yami, Heterocycles 81, 2063 (2010)

    Article  CAS  Google Scholar 

  53. D. Azarifar, R. Nejat-Yami, F. Sameri, Z. Akrami, Lett. Org. Chem. 9, 435 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Research Council of the Bu-Ali Sina University (Iran). The School of Applied Sciences, Royal Melbourne Institute of Technology in Australia is also gratefully acknowledged for preparation and instrumental analysis of the catalyst LSMO.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ali Azarifar or Davood Azarifar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azarifar, A., Nejat-Yami, R., Al Kobaisi, M. et al. Magnetic La0.7Sr0.3MnO3 nanoparticles: recyclable and efficient catalyst for ultrasound-accelarated synthesis of 4H-chromenes, and 4H-pyrano[2,3-c]pyrazoles. J IRAN CHEM SOC 10, 439–446 (2013). https://doi.org/10.1007/s13738-012-0177-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-012-0177-1

Keywords

Navigation