Skip to main content
Log in

Structure-rheology properties of polyethylenes with varying macromolecular architectures

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

It is proverbial that the rheological properties of low-density polyethylene (LDPE) and linear low-density polyethylene (LLDPE) are disparate because of their different molecular microstructures due to the unlike methods of polymerization. In this work, multiple characterizations including Size-Exclusion Chromatography (SEC) coupled with low-angle light scattering and viscosmeter, 13C Nuclear Magnetic Resonance, Crystallization Elution Fractionation (CEF) and Differential Scanning Calorimetry (DSC) were conducted to get detailed information of branching on different LDPEs and LLDPEs. It was found that, in our case, LDPEs possessed higher molecular weight and greater amounts of long-chain branching (LCB) in comparison with LLDPEs. The Chemical Composition Distribution (CCD) of each LLDPE sample depends strongly on the catalyst used. LLDPE produced by Z-N catalyst exhibited broad short-chain branching (SCB) distribution (less uniform composition distribution), whereas LLDPE obtained by metallocene catalyst showed more uniform microstructure. Unlikely, the two LDPEs displayed wider but unimodal distribution corresponding to the free-radical polymerization mechanism. Both linear and nonlinear rheological results were strongly influenced by the presence of LCB. LDPEs in this work exhibited higher zero shear-viscosity, higher values of storage modulus, longer relaxation times, and higher activation energy comparing to LLDPEs. The presence of LCB leads to more pronounced strain hardening behavior in the elongational flow which is neglected in LLDPE. The molecular structures of linear and branched PEs were consistent with the rheological properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information files. Should any raw data files be needed in another format they are available from the corresponding author upon reasonable request.

References

  1. Mangaraj S, Goswami TK, Mahajan PV (2009) Applications of Plastic Films for Modified Atmosphere Packaging of Fruits and Vegetables: A Review. Food Eng Rev 1(2):133–158

    Article  CAS  Google Scholar 

  2. Simpson DM, Vaughan GA (2001) Ethylene Polymers, LLDPE. In Encycl Polym Sci Technol

  3. Gedde UW, Viebke J, Leijström H, Ifwarson M (1994) Long-Term Properties of Hot-Water Polyolefin Pipes—a Review. Polym Eng Sci 34(24):1773–1787

    Article  CAS  Google Scholar 

  4. Hanley TL, Burford RP, Fleming RJ, Barber KW (2003) A General Review of Polymeric Insulation for Use in HVDC Cables. IEEE Electr Insul Mag 19(1):13–24

    Article  Google Scholar 

  5. Cai L, Peng Y, Xu J, Zhou C, Zhou C, Wu P, Lin D, Fan S, Cui Y (2019) Temperature Regulation in Colored Infrared-Transparent Polyethylene Textiles. Joule 3(6):1478–1486

    Article  CAS  Google Scholar 

  6. Po-Chun H, Song Alex Y, Catrysse Peter B, Chong Liu,  Yucan P,  Jin X, Shanhui F,  Yi C (2016)  Radiative Human Body Cooling by Nanoporous Polyethylene Textile. Science 353(6303):1019–1023

  7. van der Werff H, Heisserer U (2016) 3 - High-Performance Ballistic Fibers: Ultra-High Molecular Weight Polyethylene (UHMWPE). In Advanced Fibrous Composite Materials for Ballistic Protection; Chen, X., Ed.; Woodhead Publishing 71–107

  8. Lin Y, Cao J, Zhu M, Bilotti E, Zhang H, Bastiaansen CWM, Peijs T (2020) High-Performance Transparent Laminates Based on Highly Oriented Polyethylene Films. ACS Appl Polym Mater 2(6):2458–2468

    Article  CAS  Google Scholar 

  9. Basko A, Pochivalov K (2022) Current State-of-the-Art in Membrane Formation from Ultra-High Molecular Weight Polyethylene. Membranes 12(11)

  10. Agrawal P Silva MHA, Cavalcanti SN, Freitas DMG, Araújo JP, Oliveira ADB, Mélo TJA (2021) Rheological Properties of High-Density Polyethylene/Linear Low-Density Polyethylene and High-Density Polyethylene/Low-Density Polyethylene Blends. Polym Bull

  11. Wu S-L, Qiao J, Guan J, Chen H-M, Wang T, Wang C, Wang Y (2023) Nascent Disentangled UHMWPE: Origin, Synthesis, Processing. Perform Applic Euro Polym Jl 184:111799

    Article  CAS  Google Scholar 

  12. Kessner U, Kaschta J, Stadler FJ, Le Duff CS, Drooghaag X, Münstedt H (2010) Thermorheological Behavior of Various Short-and Long-Chain Branched Polyethylenes and Their Correlations with the Molecular Structure. Macromolecules 43(17):7341–7350

    Article  CAS  Google Scholar 

  13. Galland GB, De Souza RF, Mauler RS, Nunes FF (1999) 13C NMR Determination of the Composition of Linear Low-Density Polyethylene Obtained with [Η3-Methallyl-Nickel-Diimine]PF6 Complex. Macromolecules 32(5):1620–1625

    Article  CAS  Google Scholar 

  14. Dealy JM, Larson, RG, Dealy JM, Larson RG (2006) Structure and Rheology of Molten Polymers

  15. Bourg V, Valette R, Moigne N, Le; Ienny, P., Guillard, V., Bergeret, A. (2021) Shear and Extensional Rheology of Linear and Branched Polybutylene Succinate Blends. Polymers 13(4):1–19

    Article  Google Scholar 

  16. Liang X, Luo Z, Yang L, Wei J, Yuan X, Zheng Q (2017) Rheological Properties and Crystallization Behaviors of Long Chain Branched Polyethylene Prepared by Melt Branching Reaction

  17. Münstedt H, Kurzbeck S, Egersdörfer L (1998) Influence of Molecular Structure on Rheological Properties of Polyethylenes. Rheol Acta 29:21–29

    Google Scholar 

  18. Zhou Z, Pesek S, Klosin J, Rosen MS, Mukhopadhyay S, Cong R, Baugh D, Winniford B, Brown H, Xu K (2018) Long Chain Branching Detection and Quantification in LDPE with Special Solvents, Polarization Transfer Techniques, and Inverse Gated 13C NMR Spectroscopy. Macromolecules 51(21):8443–8454

    Article  CAS  Google Scholar 

  19. Yu Y, Deslauriers PJ, Rohlfing DC (2005) SEC-MALS Method for the Determination of Long-Chain Branching and Long-Chain Branching Distribution in Polyethylene. Polymer 46(14):5165–5182

    Article  CAS  Google Scholar 

  20. Langsten JA, Colby RH, Chung TCM, Shimizu F, Suzuki T, Aoki M (2007) Synthesis and Characterization of Long Chain Branched Isotactic Polypropylene via Metallocene Catalyst and T-Reagent. Macromolecules 40(8):2712–2720

    Article  Google Scholar 

  21. Gell CB, Graessley WW, Efstratiadis V, Pitsikalis M, Hadjichristidis N (1997) Viscoelasticity and Self-Diffusion in Melts of Entangled. J Polym Sci Pol Phys 35:1943–1954

    Article  CAS  Google Scholar 

  22. Gabriel C, Lilge D (2001) Comparison of Different Methods for the Investigation of the Short-Chain Branching Distribution of LLDPE. Polymer 42(1):297–303

    Article  CAS  Google Scholar 

  23. Zhou Z, Anklin C, Cong R, Qiu X, Kuemmerle R (2021) Long-Chain Branch Detection and Quantification in Ethylene-Hexene LLDPE with 13C NMR. Macromolecules 54(2):757–762

    Article  CAS  Google Scholar 

  24. Dordinejad AK, Jafari SH (2013) A Qualitative Assessment of Long Chain Branching Content in LLDPE, LDPE and Their Blends via Thermorheological Analysis. J Appl Polym Sci 130(5):3240–3250

    Article  CAS  Google Scholar 

  25. Usanase G, Fraisse F, Taam M, Boyron O (2022) Determination of Short Chain Branching in LLDPE by Rheology. Macromol Chem Phys 223(20):2200150

    Article  CAS  Google Scholar 

  26. Touil I (2021) Multi-Micro/Nanolayers of Highly Mismatched Viscoelastic Polymers Based on Polyethylene with Varying Macromolecular Architectures : Multiscale Investigations towards Better Control of Their Structuration and Recycling by Coextrusion

  27. Lu B (2017) Rheology and Dynamics at the Interface of Multi Micro-/Nanolayered Polymers

  28. Lindeman LP, Adams JQ (1971) Carbon-13 Nuclear Magnetic Resonance Spectrometry: Chemical Shifts for the Paraffins through C9. Anal Chem 43(10):1245–1252

    Article  CAS  Google Scholar 

  29. Monrabal B, Sancho-Tello J, Mayo N, Romero L (2007) Crystallization Elution Fractionation. A New Separation Process for Polyolefin Resins. Macromol Symp 257:71–79

  30. Small CM, McNally GM, Murphy WR, Marks A (2003) The Manufacture and Performance of Polyethylene-Polyisobutylene Films for Cling Applications. Dev Chem Eng Miner Process 11(1–2):169–184

    Article  Google Scholar 

  31. Delgadillo-Velázquez O, Hatzikiriakos SG, Sentmanat M (2008) Thermorheological Properties of LLDPE/LDPE Blends. Rheol Acta 47(1):19–31

    Article  Google Scholar 

  32. Liu C, He J, Ruymbeke E, van; Keunings, R., Bailly, C. (2006) Evaluation of Different Methods for the Determination of the Plateau Modulus and the Entanglement Molecular Weight. Polymer 47(13):4461–4479

    Article  CAS  Google Scholar 

  33. Hatzikiriakos SG (2000) Long Chain Branching and Polydispersity Effects on the Rheological Properties of Polyethylenes. Polym Eng Sci 40(11):2279–2287

    Article  CAS  Google Scholar 

  34. Starck P, Malmberg A, Löfgren B (2002) Thermal and Rheological Studies on the Molecular Composition and Structure of Metallocene- and Ziegler–Natta-Catalyzed Ethylene–α-Olefin Copolymers. J Appl Polym Sci 83(5):1140–1156

    Article  CAS  Google Scholar 

  35. Mohammadi M, Yousefi AA, Ehsani M (2012) Thermorheological Analysis of Blend of High-and Low-Density Polyethylenes. J Polym Res 19(2):24–29

    Article  Google Scholar 

  36. Micic P, Bhattacharya SN (2000) Rheology of LLDPE, LDPE and LLDPE/LDPE Blends and Its Relevance to the Film Blowing Process. Polym Int 49(12):1580–1589

    Article  CAS  Google Scholar 

  37. Wagner MH, Laun HM (1978) Nonlinear Shear Creep and Constrained Elastic Recovery of a LDPE Melt. Rheologica Acta  138–148

  38. Malmberg A, Kokko E, Lehmus P, Löfgren B, Seppälä JV (1998) Long-Chain Branched Polyethene Polymerized by Metallocene Catalysts Et[Ind]2ZrCl2/MAO and Et[IndH4]2ZrCl2/MAO. Macromolecules 31(24):8448–8454

    Article  CAS  Google Scholar 

  39. Wingstrand SL, Van Drongelen M, Mortensen K, Graham RS, Huang Q, Hassager O (2017) Influence of Extensional Stress Overshoot on Crystallization of LDPE. Macromolecules 50(3):1134–1140

    Article  CAS  Google Scholar 

  40. Wagner MH, Kheirandish S, Yamaguchi M (2004) Quantitative Analysis of Melt Elongational Behavior of LLDPE/LDPE Blends. Rheol Acta 44(2):198–218

    Article  CAS  Google Scholar 

  41. Giumanca R (2002) The Effects of Long Chain Branching on the Rheological Properties of Polymers  82

Download references

Acknowledgements

The authors are grateful for the financial support from the French National Research Agency (ANR) through the NOEMR project (ANR-20-CE06-0003) and Jixiang Li and Khalid Lamnawar thanks also CSC program for support.

Funding

French National Research Agency (ANR) through the NOEMR project (ANR-20-CE06-0003).

Author information

Authors and Affiliations

Authors

Contributions

Jixiang Li: drafted the manuscript, performed the rheology test; Ibtissam Touil: conceived and designed the experiments, performed the DSC test and draft editing; Carlos Fernández de Alba: performed the rheology test Fernande Boisson: performed the NMR test and data analyzation, draft editing; Olivier Boyron: performed the SEC test and data collection, draft editing. Bo Lu: conceptualization and draft editing, Huagui Zhang: conceptualization and draft editing, Esmaeil Narimissa: performed the modelling of extensional rheology, Abderrahim Maazouz: supervision, conceptualization; Khalid Lamnawar: supervision, conceptualization and draft editing.

The authors declare no competing financial interest.

Corresponding author

Correspondence to Khalid Lamnawar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 952 KB)

Supplementary file2 (TIF 1.05 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Touil, I., de Alba, C.F. et al. Structure-rheology properties of polyethylenes with varying macromolecular architectures. J Polym Res 30, 454 (2023). https://doi.org/10.1007/s10965-023-03838-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03838-9

Keywords

Navigation