Skip to main content
Log in

Strain rate sensitivity of toughened epoxy

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

The high strain rate behaviour of toughened epoxy is explored under compressive loadings. A cycloaliphatic epoxy was toughened using different types of preformed fillers: epoxy-coated elastomeric poly(dimethylsiloxane) (CSR) and thermoplastic polystyrene microspheres. The toughening ability of the fillers was quantified in terms of improvement in izod impact strength. Our studies revealed that the disadvantages associated with liquid rubber toughening, especially lowering of the glass transition temperature (T g) and storage modulus, could be overcome by using poly(dimethylsiloxane) (PDMS) microspheres. The izod impact strength increased by 33 % upon addition of 3 % w/w amino-polystyrene microspheres, and ~125 % upon introduction of CSR (5 % w/w). High strain rate studies performed using split Hopkinson pressure bar revealed that the compressive strength of epoxy and the toughened compositions were significantly enhanced at high strain rates (~103 s−1) compared with that at quasi-static loading conditions (~10−1 s−1). The effect of filler type on the strain rate sensitivity of the base polymer was established by comparing the property enhancement factor (PEF). Although introduction of elastomeric microspheres led to a lower compressive strength of epoxy, the PEF associated with the rubber-toughened composites was substantially higher than that with the thermoplastic-toughened analogous compositions, which was attributed to the viscous energy absorption in PDMS resulting from the dynamic rubber to glass transition at high strain rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bagheri R, Marouf BT, Pearson RA (2009) Rubber-toughened epoxies: a critical review. J Macromol Sci Part C Polym Rev 49:201–225

    CAS  Google Scholar 

  2. Pearson RA, Yee AF (1991) Influence of particle size and particle size distribution on toughening mechanisms in rubber-modified epoxies. J Mater Sci 26:3828–3844

    Article  CAS  Google Scholar 

  3. Akbari R, Beheshty MH, Shervin M (2013) Toughening of dicyandiamide-cured DGEBA-based epoxy resins by CTBN liquid rubber. Iran Polym J 22:313–324

    Article  CAS  Google Scholar 

  4. Chaudhary S, Surekha P, Kumar D, Rajagopal C, Roy PK (2015) Amine-functionalized poly(styrene) microspheres as thermoplastic toughener for epoxy resin. Polym Compos 36(174):183

    Google Scholar 

  5. Roy PK, Ullas AV, Chaudhary S, Mangla V, Sharma P, Kumar D, Rajagopal C (2013) Effect of SBA-15 on the energy absorption characteristics of epoxy resin for blast mitigation applications. Iran Polym J 22:709–719

    Article  CAS  Google Scholar 

  6. Norman DA, Robertson RE (2003) Rigid-particle toughening of glassy polymers. Polymer 44:2351–2362

    Article  CAS  Google Scholar 

  7. Chaudhary S, Parthasarathy S, Kumar D, Rajagopal C, Roy PK (2014) Graft-Interpenetrating polymer networks of epoxy with polyurethanes derived from poly(ethyleneterephthalate) waste. J Appl Polym Sci. doi:10.1002/app.40490

    Google Scholar 

  8. Hoppe CE, Galante MJ, Oyanguren PA, Williams RJJ, Girard-Reydet E, Pascault JP (2002) Transparent multiphasic polystyrene/epoxy blends. Polym Eng Sci 42:2361–2368

    Article  CAS  Google Scholar 

  9. Zucchi IA, Galante MJ, Williams RJJ (2005) Comparison of morphologies and mechanical properties of crosslinked epoxies modified by polystyrene and poly(methyl methacrylate)) or by the corresponding block copolymer polystyrene-b-poly(methyl methacrylate). Polymer 46:2603–2609

    Article  CAS  Google Scholar 

  10. Bhattacharyya AR, Ghosh AK, Misra A, Eichhorn KJ (2005) Reactively compatibilised polyamide 6/ethylene-co-vinyl acetate blends: mechanical properties and morphology. Polymer 46:1661–1674

    Article  CAS  Google Scholar 

  11. Barlow JW, Paul DR (1984) Mechanical compatibilization of immiscible blends. Polym Eng Sci 24:525–534

    Article  CAS  Google Scholar 

  12. Ratna D, Banthia AK (2004) Rubber toughened epoxy. Macromol Res 12:11–21

    Article  CAS  Google Scholar 

  13. Hayes BS, Seferis JC (2001) Modification of thermosetting resins and composites through preformed polymer particles: a review. Polym Compos 22:451–467

    Article  CAS  Google Scholar 

  14. Levita G, Marchetti A, Lazzeri A (1991) Toughness of epoxies modified by preformed acrylic rubber particles. Makromolekulare Chemie Macromol Symp 41:179–194

    Article  CAS  Google Scholar 

  15. Roy P, Iqbal N, Kumar D, Rajagopal C (2014) Polysiloxane-based core-shell microspheres for toughening of epoxy resins. J Polym Res 2:1–9

    CAS  Google Scholar 

  16. Naik NK, Shankar PJ, Kavala VR, Ravikumar G, Pothnis JR, Arya H (2011) High strain rate mechanical behavior of epoxy under compressive loading: experimental and modeling studies. Mater Sci Eng A 528:846–854

    Article  Google Scholar 

  17. Roy PK, Rawat AS, Rai PK (2003) Synthesis, characterisation and evaluation of polydithiocarbamate resin supported on macroreticular styrene–divinylbenzene copolymer for the removal of trace and heavy metal ions. Talanta 59:239–246

    Article  CAS  Google Scholar 

  18. Manju RP, Ramanan A, Rajagopal C (2014) Core-shell polysiloxane-MOF 5 microspheres as a stationary phase for gas–solid chromatographic separation. RSC Adv 4:17429–17433

    Article  CAS  Google Scholar 

  19. Roy P, Iqbal N, Kumar D, Rajagopal C (2014) Rubber toughening of unsaturated polyester with core–shell poly(siloxane)-epoxy microspheres. Polym Bull 71:2733–2748

    Article  CAS  Google Scholar 

  20. Jindal P, Pande S, Sharma P, Mangla V, Chaudhury A, Patel D, Singh BP, Mathur RB, Goyal M (2013) High strain rate behavior of multi-walled carbon nanotubes–polycarbonate composites. Compos Part B Eng 45:417–422

    Article  CAS  Google Scholar 

  21. Russell B, Chartoff R (2005) The influence of cure conditions on the morphology and phase distribution in a rubber-modified epoxy resin using scanning electron microscopy and atomic force microscopy. Polymer 46:785–798

    Article  CAS  Google Scholar 

  22. Affdl JCH, Kardos JL (1976) The Halpin–Tsai equations: a review. Polym Eng Sci 16:344–352

    Article  Google Scholar 

  23. Kinloch AJ, Yuen ML, Jenkins SD (1994) Thermoplastic-toughened epoxy polymers. J Mater Sci 29:3781–3790

    Article  CAS  Google Scholar 

  24. Chen J, Kinloch AJ, Sprenger S, Taylor AC (2013) The mechanical properties and toughening mechanisms of an epoxy polymer modified with polysiloxane-based core-shell particles. Polymer 54:4276–4289

    Article  CAS  Google Scholar 

  25. Chen T, Jan Y (1991) Toughening mechanism for a rubber-toughened epoxy resin with rubber/matrix interfacial modification. J Mater Sci 26:5848–5858

    Article  CAS  Google Scholar 

  26. Shim J, Mohr D (2009) Using split Hopkinson pressure bars to perform large strain compression tests on polyurea at low, intermediate and high strain rates. Int J Impact Eng 36:1116–1127

    Article  Google Scholar 

  27. Rietsch F, Bouette B (1990) The compression yield behaviour of polycarbonate over a wide range of strain rates and temperatures. Eur Polym J 26:1071–1075

    Article  CAS  Google Scholar 

  28. Chou SC, Robertson KD, Rainey JH (1973) The effect of strain rate and heat developed during deformation on the stress–strain curve of plastics. Exp Mech 13:422–432

    Article  Google Scholar 

  29. Ravikumar G, Pothnis JR, Joshi M, Akella K, Kumar S, Naik NK (2013) Analytical and experimental studies on mechanical behavior of composites under high strain rate compressive loading. Mater Des 44:246–255

    Article  CAS  Google Scholar 

  30. Pothnis JR, Ravikumar G, Joshi M, Akella K, Kumar S, Naik NK (2012) High strain rate compressive behavior of epoxy LY 556: radial constraint effect. Mater Sci Eng A 538:210–218

    Article  CAS  Google Scholar 

  31. Guo Y, Li Y (2007) Quasi-static/dynamic response of SiO2–epoxy nanocomposites. Mater Sci Eng A 458:330–335

    Article  Google Scholar 

  32. Bauwens JC (1972) Relation between the compression yield stress and the mechanical loss peak of bisphenol-A-polycarbonate in the β transition range. J Mater Sci 7:577–584

    Article  CAS  Google Scholar 

  33. Fragiadakis D, Pissis P (2007) Glass transition and segmental dynamics in poly(dimethylsiloxane)/silica nanocomposites studied by various techniques. J Non-Cryst Solids 353:4344–4352

    Article  CAS  Google Scholar 

  34. Sarva SS, Deschanel S, Boyce MC, Chen W (2007) Stress–strain behavior of a polyurea and a polyurethane from low to high strain rates. Polymer 48(8):2208–2213

    Article  CAS  Google Scholar 

  35. Roland CM, Casalini R (2007) Effect of hydrostatic pressure on the viscoelastic response of polyurea. Polymer 48:5747–5752

    Article  CAS  Google Scholar 

  36. Bogoslovov RB, Roland CM, Gamache RM (2007) Impact-induced glass transition in elastomeric coatings. Appl Phys Lett 90:1–3

    Article  Google Scholar 

  37. Yi J, Boyce MC, Lee GF, Balizer E (2006) Large deformation rate-dependent stress–strain behavior of polyurea and polyurethanes. Polymer 47:319–329

    Article  CAS  Google Scholar 

  38. Grujicic M, Bell WC, Pandurangan B, He T (2010) Blast-wave impact-mitigation capability of polyurea when used as helmet suspension-pad material. Mater Des 31:4050–4065

    Article  CAS  Google Scholar 

  39. Li Z, Lambros J (2001) Strain rate effects on the thermomechanical behavior of polymers. Int J Solids Struct 38:3549–3562

    Article  Google Scholar 

  40. Mulliken AD, Boyce MC (2006) Mechanics of the rate-dependent elastic–plastic deformation of glassy polymers from low to high strain rates. Int J Solids Struct 43:1331–1356

    Article  CAS  Google Scholar 

  41. Omar MF, Akil HM, Ahmad ZA (2011) Measurement and prediction of compressive properties of polymers at high strain rate loading. Mater Des 32:4207–4215

    Article  CAS  Google Scholar 

  42. Briscoe BJ, Nosker RW (1984) The influence of interfacial friction on the deformation of high density polyethylene in a split Hopkinson pressure bar. Wear 95:241–262

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Director, CFEES, and the Director, TBRL, for taking keen interest and providing the laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasun Kumar Roy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, S., Iqbal, N., Mangla, V. et al. Strain rate sensitivity of toughened epoxy. Iran Polym J 24, 871–881 (2015). https://doi.org/10.1007/s13726-015-0375-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-015-0375-7

Keywords

Navigation