Skip to main content

Advertisement

Log in

Water-repellent flexible fabric strain sensor based on polyaniline/titanium dioxide-coated knit polyester fabric

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

A flexible fabric strain sensor was prepared by in situ chemical polymerization of aniline on knit polyester fabric surface in aqueous acid solutions using ammonium persulfate as an oxidant. Furthermore, the optimum addition ratio of titanium dioxide (TiO2) in polyaniline (PANI) in the granular conductive network membrane was investigated. The morphological, structural, thermal, electrical, strain-sensing, and water-repellent properties of the polyester knit fabrics modified with PANI and PANI/TiO2 hybrid were analyzed. The surface electrical resistance of PANI/TiO2 conductive films on the knit fabric was higher than that of pristine PANI, which was due to the particle blocking the conduction path effect caused by TiO2 embedded in the PANI matrix. However, it was further found that the addition of TiO2 could improve the durability properties of flexible fabric strain sensor against cycles of elongation, though with a little loss in electrical conductivity and sensitivity. Moreover, the water-repellent property was evaluated by measuring water contact angles. The results showed that for PANI/TiO2 nanocomposites-coated flexible fabric strain sensor, a desirable level of contact angle (127.5° ± 1.7°) was even preserved at 121.8° ± 2.6° after 100 cycles of elongation. This indicated that the flexible fabric strain sensor had rather high water-repellent efficiency and excellent durability during the elongation cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mondal S (2008) Phase change materials for smart textiles—an overview. Appl Therm Eng 28:1536–1550

    Article  CAS  Google Scholar 

  2. Farringdon J, Moore AJ, Tilbury N, Church J, Biemond PD (1999) Wearable sensor badge and sensor jacket for context awareness. Wearable computers, 1999 digest of papers. The 3rd international symposium on IEEE 107–113

  3. Rossi D, Lorussi F, Mazzoldi A, Orsini P, Scilingo E (2003) Sensors and sensing in biology and engineering. Springer, Wien

    Google Scholar 

  4. Scilingo EP, Lorussi F, Mazzoldi A, De Rossi D (2003) Strain-sensing fabrics for wearable kinaesthetic-like systems. Sens J 3:460–467

    Article  Google Scholar 

  5. Kuo H, Hsui TF, Tuo Y, Yuan C (2012) Microwave adsorption of core–shell structured Sr(MnTi) x Fe12−2x O19/PANI composites. J Mater Sci 47:2264–2270

    Article  CAS  Google Scholar 

  6. Dhingra M, Shrivastava S, Senthil Kumar P, Annapoorni S (2013) Polyaniline mediated enhancement in band gap emission of zinc oxide. Compos B 45:1515–1520

    Article  CAS  Google Scholar 

  7. Ansari R, Alizadeh N, Shademan SM (2013) Application of silica gel/polyaniline composite for adsorption of ascorbic acid from aqueous solutions. Iran Polym J 22:739–748

    Article  CAS  Google Scholar 

  8. Zare EN, Lakouraj MM (2014) Biodegradable polyaniline/dextrin conductive nanocomposites: synthesis, characterization, and study of antioxidant activity and sorption of heavy metal ions. Iran Polym J 23:257–266

    Article  CAS  Google Scholar 

  9. Yan H, Kou K (2014) Enhanced thermoelectric properties in polyaniline composites with polyaniline-coated carbon nanotubes. J Mater Sci 49:1222–1228

    Article  CAS  Google Scholar 

  10. Wang G, Xing W, Zhuo S (2012) The production of polyaniline/graphene hybrids for use as a counter electrode in dye-sensitized solar cells. Electrochim Acta 66:151–157

    Article  CAS  Google Scholar 

  11. Konwer S, Guha AK, Dolui SK (2013) Graphene oxide-filled conducting polyaniline composites as methanol-sensing materials. J Mater Sci 48:1729–1739

    Article  CAS  Google Scholar 

  12. Li L, Song H, Zhang Q, Yao J, Chen X (2009) Effect of compounding process on the structure and electrochemical properties of ordered mesoporous carbon/polyaniline composites as electrodes for supercapacitors. J Power Sources 187:268–274

    Article  CAS  Google Scholar 

  13. Patil S, Chougule M, Sen S, Patil V (2012) Measurements on room temperature gas sensing properties of CSA doped polyaniline–ZnO nanocomposites. Measurement 45:243–249

    Article  Google Scholar 

  14. Zhao YP, Cai ZS, Zhou ZY, Fu XL (2011) Fabrication of conductive network formed by polyaniline–ZnO composite on fabric surfaces. Thin Solid Films 519:5887–5891

    Article  CAS  Google Scholar 

  15. Yilmaz H, Zengin H, Unal HI (2012) Synthesis and electrorheological properties of polyaniline/silicon dioxide composites. J Mater Sci 47:5276–5286

    Article  CAS  Google Scholar 

  16. Shambharkar BH, Umare SS (2011) Synthesis and characterization of polyaniline/NiO nanocomposite. J Appl Polym Sci 122:1905–1912

    Article  CAS  Google Scholar 

  17. Saini P, Choudhary V, Vijayan N, Kotnala RK (2012) Improved electromagnetic interference shielding response of poly(aniline)-coated fabrics containing dielectric and magnetic nanoparticles. J Phys Chem C 116:13403–13412

    Article  CAS  Google Scholar 

  18. Kachoei Z, Khoee S, Sanjani NS (2015) Well-designed sandwich-like structured graphene/emeraldine salts prepared by inverse microemulsion polymerization with particle-on-sheet and sheet-on-sheet morphologies. Iran Polym J 24:203–217

    Article  CAS  Google Scholar 

  19. Ashraf R, Kausar A, Siddiq M (2014) High-performance polymer/nanodiamond composites: synthesis and properties. Iran Polym J 23:531–545

    Article  CAS  Google Scholar 

  20. Ferrero F, Periolatto M (2013) Application of fluorinated compounds to cotton fabrics via sol–gel. Appl Surf Sci 275:201–207

    Article  CAS  Google Scholar 

  21. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959

    Article  CAS  Google Scholar 

  22. Wu M, Zhang F, Yu J, Zhou H, Zhang D, Hu C, Huang J (2014) Fabrication and evaluation of light-curing nanocomposite resins filled with surface-modified TiO2 nanoparticles for dental application. Iran Polym J 23:513–524

    Article  CAS  Google Scholar 

  23. Li GJ, Fan SR, Wang K, Ren XL, Mu XW (2010) Modification of TiO2 with titanate coupling agent and its impact on the crystallization behaviour of polybutylene terephthalate. Iran Polym J 19:115–121

    CAS  Google Scholar 

  24. Bowman D, Mattes BR (2005) Conductive fibre prepared from ultra-high molecular weight polyaniline for smart fabric and interactive textile applications. Synth Met 154:29–32

    Article  CAS  Google Scholar 

  25. Kim BS, Lee KT, Huh PH, Lee DH, Jo NJ, Lee JO (2009) In situ template polymerization of aniline on the surface of negatively charged TiO2 nanoparticles. Synth Met 159:1369–1372

    Article  CAS  Google Scholar 

  26. Xiong S, Wang Q, Xia H (2004) Template synthesis of polyaniline/TiO2 bilayer microtubes. Synth Met 146:37–42

    Article  CAS  Google Scholar 

  27. Savitha KU, Prabu HG (2013) Polyaniline–TiO2 hybrid-coated cotton fabric for durable electrical conductivity. J Appl Polym Sci 127:3147–3151

    Article  CAS  Google Scholar 

  28. Tang X, Tian M, Qu L, Zhu S, Guo X, Han G, Sun K, Hu X, Wang Y, Xu X (2014) A facile fabrication of multifunctional knit polyester fabric based on chitosan and polyaniline polymer nanocomposite. Appl Surf Sci 317:505–510

    Article  CAS  Google Scholar 

  29. Arenas M, Sanchez G, Martinez-Alvarez O, Castaño V (2014) Electrical and morphological properties of polyaniline–polyvinyl alcohol in situ nanocomposites. Compos B 56:857–861

    Article  CAS  Google Scholar 

  30. Hong GB, Su TL (2012) Statistical analysis of experimental parameters in characterization of ultraviolet-resistant polyester fiber using a TOPSIS-Taguchi method. Iran Polym J 21:877–885

    Article  CAS  Google Scholar 

  31. Ivanova NA, Philipchenko AB (2012) Superhydrophobic chitosan-based coatings for textile processing. Appl Surf Sci 263:783–787

    Article  CAS  Google Scholar 

  32. Emelyanenko AM, Ermolenko NV, Boinovich LB (2004) Contact angle and wetting hysteresis measurements by digital image processing of the drop on a vertical filament. Colloids Surf A Physicochem Eng Asp 239:25–31

    Article  CAS  Google Scholar 

  33. Chao D, Chen J, Lu X, Chen L, Zhang W, Wei Y (2005) SEM study of the morphology of high molecular weight polyaniline. Synth Met 150:47–51

    Article  CAS  Google Scholar 

  34. Sathiyanarayanan S, Azim SS, Venkatachari G (2007) A new corrosion protection coating with polyaniline–TiO2 composite for steel. Electrochim Acta 52:2068–2074

    Article  CAS  Google Scholar 

  35. Girija T, Sangaranarayanan M (2006) Polyaniline-based nickel electrodes for electrochemical supercapacitors—influence of Triton X-100. J Power Sources 159:1519–1526

    Article  CAS  Google Scholar 

  36. Ghosh D, Giri S, Kalra S, Das CK (2012) Synthesis and characterisations of TiO2 coated multiwalled carbon nanotubes/graphene/polyaniline nanocomposite for supercapacitor applications. Open J Appl Sci 2:70–77

    Article  Google Scholar 

  37. Xia H, Wang Q, Qiu G (2003) Polymer-encapsulated carbon nanotubes prepared through ultrasonically initiated in situ emulsion polymerization. Chem Mater 15:3879–3886

    Article  CAS  Google Scholar 

  38. Min S, Wang F, Han Y (2007) An investigation on synthesis and photocatalytic activity of polyaniline sensitized nanocrystalline TiO2 composites. J Mater Sci 42:9966–9972

    Article  CAS  Google Scholar 

  39. Manjunath S, Anilkumar KR, Revanasiddappa M, Ambika Prasad M (2008) Frequency-dependent conductivity and dielectric permittivity of polyaniline/TiO2 composites. Ferroelectr Lett 35:36–46

    Article  CAS  Google Scholar 

  40. Javadi H, Cromack K, MacDiarmid A, Epstein A (1989) Microwave transport in the emeraldine form of polyaniline. Phys Rev B 39:3579

    Article  CAS  Google Scholar 

  41. Unnikrishnan SK, Vinayasree S, Halliah GP, Anantharaman MR (2013) Flexible electromagnetic interference shields in S band region from textile materials. J Ind Text 43:215–230

    Article  CAS  Google Scholar 

  42. Lin Y, Li D, Hu J, Xiao G, Wang J, Li W, Fu X (2012) Highly efficient photocatalytic degradation of organic pollutants by PANI–modified TiO2 composite. J Phys Chem C 116:5764–5772

    Article  CAS  Google Scholar 

  43. Li Y, Yu Y, Wu L, Zhi J (2013) Processable polyaniline/titania nanocomposites with good photocatalyic and conductivity properties prepared via peroxo-titanium complex catalyzed emulsion polymerization approach. Appl Surf Sci 273:135–143

    Article  CAS  Google Scholar 

  44. Qu M, Zhao G, Cao X, Zhang J (2008) Biomimetic fabrication of lotus-leaf-like structured polyaniline film with stable superhydrophobic and conductive properties. Langmuir 24:4185–4189

    Article  CAS  Google Scholar 

  45. Ganesh VA, Dinachali SS, Nair AS, Ramakrishna S (2013) Robust superamphiphobic film from electrospun TiO2 nanostructures. ACS Appl Mater Interfaces 5:1527–1532

    Article  CAS  Google Scholar 

  46. Lai Y, Lin C, Huang J, Zhuang H, Sun L, Nguyen T (2008) Markedly controllable adhesion of superhydrophobic spongelike nanostructure TiO2 films. Langmuir 24:3867–3873

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Natural Science Foundation of China (Nos. 51273097 and 51306095), China Postdoctoral Science Foundation via Grant No. 2014M561887 and Taishan Scholars Construction Engineering of Shandong Province, program for scientific research innovation team in colleges and universities of Shandong Province, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingwei Tian or Lijun Qu.

Additional information

X. Tang and M. Tian have contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, X., Tian, M., Qu, L. et al. Water-repellent flexible fabric strain sensor based on polyaniline/titanium dioxide-coated knit polyester fabric. Iran Polym J 24, 697–704 (2015). https://doi.org/10.1007/s13726-015-0361-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-015-0361-0

Keywords

Navigation