Skip to main content
Log in

Strain Sensors Based on Electroless Ni-P Plated Polyester Woven Fabrics

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this study, polyester and polyester/spandex woven fabrics were electroless Ni-P plated at different conditions. The physical and electrical properties of Ni-P coated fabrics were investigated by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), wide angle X-ray scattering (WAXS), tensile tests, and air permeability, hydrophobicity and cyclic electro-mechanical measurements (strain sensor evaluation). SEM, WAXS and EDX results revealed the existence of an amorphous layer consisting of Ni and phosphorous atoms on the surface of the fabrics. Besides, the coated fabrics became more hydrophobic than the raw fabrics and the air permeability of them was also decreased. The electroless plated polyester fabrics showed some regular variation of resistance versus time during cyclic loading under 25 % strain, with very distinct maximums and minimums in the resistance/time curves. This trend was not observed for polyester/ spandex coated fabrics due to its mechanism of deformation under strain. As a conclusion, the polyester Ni-P electroless plated fabrics could be considered as strain fabric sensors that might be applied in smart textiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Black, “Trends in Smart Medical Textiles”, In “Smart Textiles for Medicine and Healthcare: Materials, Systems and Applications” (L. Van Langenhove Ed.), pp.3–25, Woodhead Publishing Limited, Cambidge, 2007.

    Chapter  Google Scholar 

  2. L. Van Langenhove and C. Hertleer in “Intelligent Textiles for Personal Protection and Safety” (S. Jayaraman, P. Kiekens, and A. M. Grancaric Eds.), pp.89–106, IOS Press, Amsterdam, 2006.

  3. S. Domenech, E. Lima, V. Drago, J. De Lima, N. Borges, A. Avila, and V. Soldi, Appl. Surf. Sci., 220, 238 (2003).

    Article  CAS  Google Scholar 

  4. M. Šimor, M. Cernák, Y. Imahori, M. Štefecka, and M. Kando, Surf. Coat. Tech., 172, 1 (2003).

    Article  CAS  Google Scholar 

  5. S. Jiang, E. Newton, C. Yuen, and C. Kan, J. Appl. Polym. Sci., 96, 919 (2005).

    Article  CAS  Google Scholar 

  6. X. Liu, H. Chang, Y. Li, W. T. Huck, and Z. Zheng, ACS Appl. Mater. Interface, 2, 529 (2010).

    Article  CAS  Google Scholar 

  7. L. M. Castano and A. B. Flatau, Smart Mater. Struct., 23, 053001 (2014).

    Article  CAS  Google Scholar 

  8. W. Sha, X. Wu, and K. G. Keong, “Electroless Copper and Nickel-phosphorus Plating: Processing, Characterisation and Modelling”, pp.141–162, Woodhead Publishing Limited, Cambridge, 2011.

    Book  Google Scholar 

  9. S. Choi and Z. Jiang, Sens. Actuator. A: Phys., 128, 317 (2006).

    Article  CAS  Google Scholar 

  10. B. J. Munro, T. E. Campbell, G. G. Wallace, and J. R. Steele, Sens. Actuator. B: Chem., 131, 541 (2008).

    Article  CAS  Google Scholar 

  11. T.-W. Shyr, J.-W. Shie, C.-H. Jiang, and J.-J. Li, Sens., 14, 4050 (2014).

    Article  CAS  Google Scholar 

  12. I. Perelshtein, G. Applerot, N. Perkas, G. Guibert, S. Mikhailov, and A. Gedanken, Nanotechnology, 19, 245705 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. J. W. Cho and H. Jung, J. Mater. Sci., 32, 5371 (1997).

    Article  CAS  Google Scholar 

  14. K. W. Oh, K. H. Hong, and S. H. Kim, J. Appl. Polym. Sci., 74, 2094 (1999).

    Article  Google Scholar 

  15. A. D. Child and H. H. Kuhn, Synth. Met., 84, 141 (1997).

    Article  CAS  Google Scholar 

  16. T. Mäkelä, J. Sten, A. Hujanen, and H. Isotalo, Synth. Met., 101, 707 (1999).

    Article  Google Scholar 

  17. R. Gregory, W. Kimbrell, and H. Kuhn, Synth. Met., 28, 823 (1989).

    Article  Google Scholar 

  18. S. Kutanis, M. Karakisla, U. Akbulut, and M. Sacak, Compos. A: Appl. Sci. Manuf., 38, 609 (2007).

    Article  CAS  Google Scholar 

  19. A. Schwarz, J. Hakuzimana, A. Kaczynska, J. Banaszczyk, P. Westbroek, E. McAdams, G. Moody, Y. Chronis, G. Priniotakis, and G. De Mey, Surf. Coat. Tech., 204, 1412 (2010).

    Article  CAS  Google Scholar 

  20. S. Jiang, C. Kan, C. Yuen, and W. Wong, J. Appl. Polym. Sci., 108, 2630 (2008).

    Article  CAS  Google Scholar 

  21. Y. Lu, Q. Liang, and L. Xue, Surf. Coat. Tech., 206, 3639 (2012).

    Article  CAS  Google Scholar 

  22. X. Gan, Y. Wu, L. Liu, B. Shen, and W. Hu, Surf. Coat. Tech., 201, 7018 (2007).

    Article  CAS  Google Scholar 

  23. S. Jiang and R. Guo, Fiber. Polym., 9, 755 (2008).

    Article  CAS  Google Scholar 

  24. S. S. Djokic and P. L. Cavallotti in “Electrodeposition”, p.251, Springer, Berlin, 2010.

    Book  Google Scholar 

  25. R. Guo, S. Jiang, C. Yuen, M. Ng, J. Lan, Y. Yeung, and S. Lin, Fiber. Polym., 14, 752 (2013).

    Article  CAS  Google Scholar 

  26. X. Gan, Y. Wu, L. Liu, B. Shen, and W. Hu, J. Alloy. Compd., 455, 308 (2008).

    Article  CAS  Google Scholar 

  27. R. J. Helmer, M. A. Mestrovic, D. Farrow, S. Lucas, and W. Spratford in “Advances in Science and Technology”, Vol. 60, pp.144–153, Trans. Tech. Publications, Switzerland, 2008.

    Google Scholar 

  28. T. Hoffmann, B. Eilebrecht, and S. Leonhardt, IEEE Sensor. J., 11, 1112 (2011).

    Article  Google Scholar 

  29. J. Wang, P. Xue, X. Tao, and T. Yu, Adv. Eng. Mater., 16, 565 (2014).

    Article  CAS  Google Scholar 

  30. X. Tao, L. Tang, W.-C. Du, and C.-L. Choy, Compos. Sci. Tech., 60, 657 (2000).

    Article  Google Scholar 

  31. L. Torsi, M. Pezzuto, P. Siciliano, R. Rella, L. Sabbatini, L. Valli, and P. Zambonin, Sens. Actuat. B: Chem., 48, 362 (1998).

    Article  CAS  Google Scholar 

  32. K. H. Hong, K. W. Oh, and T. J. Kang, J. Appl. Polym. Sci., 92, 37 (2004).

    Article  CAS  Google Scholar 

  33. T. Kinkeldei, C. Zysset, K. Cherenack, and G. Tröster, Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), 2011 16th International 2011, pp.1156–1159, IEEE (2011).

    Google Scholar 

  34. T. Kinkeldei, C. Zysset, K. Cherenack, and G. Troester, Sensors, 2009 IEEE 2009, pp.1580–1583, IEEE (2009).

    Book  Google Scholar 

  35. A. T. Tung, B.-H. Park, D. H. Liang, and G. Niemeyer, Sensor. Actuat. A: Phys., 147, 83 (2008).

    Article  CAS  Google Scholar 

  36. J. Wu, D. Zhou, C. O. Too, and G. G. Wallace, Synth. Met., 155, 698 (2005).

    Article  CAS  Google Scholar 

  37. S. Brady, K. Lau, W. Megill, G. Wallace, and D. Diamond, Synth. Met., 154, 25 (2005).

    Article  CAS  Google Scholar 

  38. L. Guo, L. Berglin, and H. Mattila, Nordic Text. J., 51 (2010).

    Google Scholar 

  39. H. Zhang, L. Shen, and J. Chang, J. Ind. Text., 1528083710387176 (2010).

    Google Scholar 

  40. M. Haghighatkish and M. Yousefi, Iran. J. Polym. Sci. Tech., 1, 56 (1992).

    CAS  Google Scholar 

  41. Y. Yuan and T. R. Lee, “Contact Angle and Wetting Properties”, Surf. Sci. Tech., (G. Bracco and B. Holst Eds.), pp.3–34, Springer-Verlag, Berlin, 2013.

    Chapter  Google Scholar 

  42. P. Xue, J. Wang, and X. Tao, High Perform. Polym., 26, 364 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Youssefi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Youssefi, M., Fanaei, E. & Shanbeh, M. Strain Sensors Based on Electroless Ni-P Plated Polyester Woven Fabrics. Fibers Polym 20, 562–568 (2019). https://doi.org/10.1007/s12221-019-8946-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-019-8946-4

Keywords

Navigation