Skip to main content

Advertisement

Log in

Effect of Cu-MOFs incorporation on gas separation of Pebax thin film nanocomposite (TFN) membrane

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

A Correction to this article was published on 06 January 2021

This article has been updated

Abstract

MOF-based membranes, which have appropriate MOF dispersion and suitable interaction, have shown high CO2 permeability and significant CO2/CH4 and CO2/N2 selectivity. In this study, a layer of Pebax was coated on polysulfone (PSF), which this layer incorporated by various content of Cu-MOFs to improve the performance (permeability and CO2/CH4 and CO2/N2 selectivity) of all membranes. Characterization techniques such as SEM, TGA, BET, and gas adsorption verified that Cu-BTC was successfully dispersed into the Pebax matrix. Pure CO2 and CH4 gases permeation experiments were performed to investigate the impact of Cu-MOFs on the gas permeability of prepared MOF-based membranes. The “Pebax” embedded by 15 wt% CuBTC and 15 wt% of NH2-CuBTC over PSF support exhibited higher gas separation performance compared to the pristine one. They demonstrated a CO2 permeability of 228.6 and 258.3 Barrer, respectively, while the blank membrane had a CO2 permeability of 110.6 Barrer. Embedding the NH2-Cu-BTC intensified the interaction between incorporated MOF particles and the polymer phase that led to increase the CO2/CH4 and CO2/N2 selectivity. In addition, the performance of prepared membranes was evaluated at various feed pressures with the range of 2–10 bar. The CO2/CH4 and CO2/N2 separation was enhanced as the feed pressure surged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 06 January 2021

    Unfortunately Table 1 was not corrected during the e.proof reading. The correct data for membrane composition in Table 1 is as follow:

References

  1. S. Choi, J. H. Drese and C.W. Jones, ChemSusChem: Chem. Sustainability Energy Mater., 2, 796 (2009).

    Article  CAS  Google Scholar 

  2. K. Shahrezaei, R. Abedini, M. Lashkarbolooki and A. Rahimpour, Korean J. Chem. Eng., 36, 2085 (2019).

    Article  CAS  Google Scholar 

  3. U. W. Siagian, A. Raksajati, N. F. Himma, K. Khoiruddin and I. G. Wenten, J. Nat. Gas Sci. Eng., 67, 172 (2019).

    Article  CAS  Google Scholar 

  4. L. A. Pellegrini, G. De Guido and V. Valentina, J. Nat. Gas Sci. Eng., 61, 303 (2019).

    Article  CAS  Google Scholar 

  5. O. Aschenbrenner and P. Styring, Energy Environ. Sci., 3, 1106 (2010).

    Article  CAS  Google Scholar 

  6. M. Tuinier, M. van Sint Annaland, G. J. Kramer and J. Kuipers, Chem. Eng. Sci., 65, 114 (2010).

    Article  CAS  Google Scholar 

  7. J. Lee, J. Kim, H. Kim, K. S. Lee and W. Won, J. Nat. Gas Sci. Eng., 61, 206 (2019).

    Article  CAS  Google Scholar 

  8. M. H. Nematollahi, S. Babaei and R. Abedini, Korean J. Chem. Eng., 36, 763 (2019).

    Article  CAS  Google Scholar 

  9. P. Bernardo, E. Drioli and G. Golemme, Ind. Eng. Chem. Res., 48, 4638 (2009).

    Article  CAS  Google Scholar 

  10. J. Dechnik, J. Gascon, C. J. Doonan, C. Janiak and C. J. Sumby, Angew. Chem. Int. Ed., 56, 9292 (2017).

    Article  CAS  Google Scholar 

  11. D. Bastani, N. Esmaeili and M. Asadollahi, J. Ind. Eng. Chem., 19, 375 (2013).

    Article  CAS  Google Scholar 

  12. H. B. T. Jeazet, C. Staudt and C. Janiak, Dalton Trans., 41, 14003 (2012).

    Article  Google Scholar 

  13. S. Wang, X. Li, H. Wu, Z. Tian, Q. Xin, G. He, D. Peng, S. Chen, Y. Yin and Z. Jiang, Energy Environ. Sci., 9, 1863 (2016).

    Article  CAS  Google Scholar 

  14. L. M. Robeson, J. Membr. Sci., 320, 390 (2008).

    Article  CAS  Google Scholar 

  15. B. D. Freeman, Macromolecules, 32, 375 (1999).

    Article  CAS  Google Scholar 

  16. R. Babarao and J. Jiang, Energy Environ. Sci., 1, 139 (2008).

    Article  CAS  Google Scholar 

  17. R. Abedini, A. Mosayebi and M. Mokhtari, Process Saf. Environ. Prot., 114, 229 (2018).

    Article  CAS  Google Scholar 

  18. K. Pirzadeh, A.A. Ghoreyshi, M. Rahimnejad and M. Mohammadi, Korean J. Chem. Eng., 35, 974 (2018).

    Article  CAS  Google Scholar 

  19. H. Hosseinzadeh Beiragh, M. Omidkhah, R. Abedini, T. Khosravi and S. Pakseresht, Asia-Pacific J. Chem. Eng;., 11, 522 (2016).

    Article  CAS  Google Scholar 

  20. T. W. Pechar, S. Kim, B. Vaughan, E. Marand, M. Tsapatsis, H. K. Jeong and C. J. Cornelius, J. Membr. Sci., 277, 195 (2006).

    Article  CAS  Google Scholar 

  21. E. Nezhadmoghadam, M. Pourafshari Chenar, M. Omidkhah, A. Nezhadmoghadam and R. Abedini, Korean J. Chem. Eng., 35, 526 (2018).

    Article  CAS  Google Scholar 

  22. T.-H. Weng, H.-H. Tseng and M.-Y. Wey, Int. J. Hydrogen Energy, 35, 6971 (2010).

    Article  CAS  Google Scholar 

  23. X. Zou, H. Ren and G. Zhu, Chem. Commun., 49, 3925 (2013).

    Article  CAS  Google Scholar 

  24. X. Zou and G. Zhu, Adv. Mater., 30, 1700750 (2018).

    Article  Google Scholar 

  25. X. Feng, X. Ding and D. Jiang, Chem. Soc. Rev., 41, 6010 (2012).

    Article  CAS  Google Scholar 

  26. S.-Y Ding and W Wang, Chem. Soc. Rev., 42, 548 (2013).

    Article  CAS  Google Scholar 

  27. A. I. Cooper, Adv. Mater., 21, 1291 (2009).

    Article  CAS  Google Scholar 

  28. R. Mahajan and W. J. Koros, Ind. Eng. Chem. Res., 39, 2692 (2000).

    Article  CAS  Google Scholar 

  29. M. Mozafari, R. Abedini and A. Rahimpour, J. Mater. Chem. A, 6, 12380 (2018).

    Article  CAS  Google Scholar 

  30. K. C. Wong, P. S. Goh and A. F. Ismail, Int. Biodeterior. Biodegrad., 102, 339 (2015).

    Article  CAS  Google Scholar 

  31. M. Mozafari, A. Rahimpour and R. Abedini, J. Ind. Eng. Chem., 85, 102 (2020).

    Article  CAS  Google Scholar 

  32. K. Pirzadeh, K. Esfandiari, A. A. Ghoreyshi and M. Rahimnejad, Korean J. Chem. Eng., 37, 513 (2020).

    Article  CAS  Google Scholar 

  33. S. R. Venna, M. Lartey, T. Li, A. Spore, S. Kumar, H. B. Nulwala, D. R. Luebke, N. L. Rosi and E. Albenze, J. Mater. Chem. A, 3, 5014 (2015).

    Article  CAS  Google Scholar 

  34. Q. Yang, A. D. Wiersum, P. L. Llewellyn, V. Guillerm, C. Serre and G. Maurin, Chem. Commun., 47, 9603 (2011).

    Article  CAS  Google Scholar 

  35. F. Dorosti and A. Alizadehdakhel, Chem. Eng. Res. Des., 136, 119 (2018).

    Article  CAS  Google Scholar 

  36. L. Xiang, Y. Pan, G. Zeng, J. Jiang, J. Chen and C. Wang, J. Membr. Sci., 500, 66 (2016).

    Article  CAS  Google Scholar 

  37. N. Azizi, M. R. Hojjati and M. M. Zarei, Silicon, 10, 1461 (2018).

    Article  CAS  Google Scholar 

  38. A. Arabi Shamsabadi, F. Seidi, E. Salehi, M. Nozari, A. Rahimpour and M. Soroush, J. Mater. Chem. A, 5, 4011 (2017).

    Article  Google Scholar 

  39. X. Li, Z. Jiang, Y. Wu, H. Zhang, Y. Cheng, R. Guo and H. Wu, J. Membr. Sci., 495, 72 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge the financial support of Islamic Azad University, Marvdasht, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin Azdarpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fakoori, M., Azdarpour, A., Abedini, R. et al. Effect of Cu-MOFs incorporation on gas separation of Pebax thin film nanocomposite (TFN) membrane. Korean J. Chem. Eng. 38, 121–128 (2021). https://doi.org/10.1007/s11814-020-0636-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0636-9

Keywords

Navigation