Skip to main content
Log in

Practical Considerations for Body Composition Assessment of Adults with Class II/III Obesity Using Bioelectrical Impedance Analysis or Dual-Energy X-Ray Absorptiometry

  • Metabolism (J Proietto, Section Editor)
  • Published:
Current Obesity Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this review is to explore the practical considerations for body composition assessment of adults with class II/III obesity. Studies assessing adults (18–64 years) with a body mass index (BMI) ≥35 kg/m2 with bioelectrical impedance analysis (BIA) and/or dual-energy X-ray absorptiometry (DXA) were included.

Recent Findings

Twelve studies met inclusion criteria. Five considerations were identified: variances in equipment and technology, equipment weight capacity, subject positioning, tissue penetration, and total body hydration. In subjects with BMI ≥35 kg/m2, BIA overestimated fat-free mass with scaling errors as BMI increased. DXA provided accurate and reliable body composition measures, but equipment-related barriers prevented assessment of some taller, wider, and heavier subjects.

Summary

BIA is an unreliable method to assess body composition in class II/III obesity. Advancements in DXA technology (e.g., iDXA), methodology (e.g., subject positioning, longer scan times), and more inclusive testing criteria (e.g., use equipment limits not just BMI) may improve access and understanding of body composition in this cohort.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of childhood and adult obesity in the United States, 2011–2012. JAMA. 2014;311(8):806–14. doi:10.1001/jama.2014.732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Statistics Canada. Table 105-0501—health indicator profile, annual estimates, by age group and sex, Canada, provinces, territories, health regions (2013 boundaries) and peer groups, occasional, CANSIM (database). 2013. Available from http://www5.statcan.gc.ca/cansim/a26?lang=eng&id=1050501. Accessed 12 Jan 2016.

  3. World Health Organization. Obesity: preventing and managing the global epidemic. Report of a WHO Consultation presented at the World Health Organization, Geneva, Switzerland, 3-5 June 1997.

  4. Mechanick JI, Youdim A, Jones DB, Garvey WT, Hurley DL, Mcmahon MM, et al. Clinical practice guidelines for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient—2013 update: co-sponsored by American Association of Clinical Endocrinologists, the Obesity Society, and American Society for Metabolic & Bariatric Surgery. Endocr Pract. 2013;19(2):337–72. doi:10.4158/EP12437.GL.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on sarcopenia in older people. Age Ageing. 2010;39(4):412–23. doi:10.1093/ageing/afq034.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Prado CM, Siervo M, Mire E, Heymsfield SB, Stephan BC, Broyles S, et al. A population-based approach to define body-composition phenotypes. Am J Clin Nutr. 2014;99(6):1369–77. doi:10.3945/ajcn.113.078576. This study explored body composition of a large population-representative North American sample, showing the prevalence of abnormal body composition at any age and BMI strata. It highlights how people with obesity may present with different levels of muscle mass.

    Article  CAS  PubMed  Google Scholar 

  7. Cherin P, Voronska E, Fraoucene N, de Jaeger C. Prevalence of sarcopenia among healthy ambulatory subjects: the sarcopenia begins from 45 years. Aging Clin Exp Res. 2014;26(2):137–46. doi:10.1007/s40520-013-0132-8.

    Article  PubMed  Google Scholar 

  8. Prado CM, Wells JC, Smith SR, Stephan BC, Siervo M. Sarcopenic obesity: a critical appraisal of the current evidence. Clin Nutr. 2012;31(5):583–601. doi:10.1016/j.clnu.2012.06.010.

    Article  CAS  PubMed  Google Scholar 

  9. Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gomez JM, et al. Bioelectrical impedance analysis—part I: review of principles and methods. Clin Nutr. 2004;23(5):1226–43. doi:10.1016/j.clnu.2004.06.004.

    Article  PubMed  Google Scholar 

  10. Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Manuel Gomez J, et al. Bioelectrical impedance analysis—part II: utilization in clinical practice. Clin Nutr. 2004;23(6):1430–53. doi:10.1016/j.clnu.2004.09.012.

    Article  PubMed  Google Scholar 

  11. Prado CM, Heymsfield SB. Lean tissue imaging: a new era for nutritional assessment and intervention. J Parenter Enteral Nutr. 2014;38(8):940–53. doi:10.1177/0148607114550189.

    Article  Google Scholar 

  12. Earthman CP. Body composition tools for assessment of adult malnutrition at the bedside: a tutorial on research considerations and clinical applications. JPEN J Parenter Enteral Nutr. 2015;39(7):787–822. doi:10.1177/0148607115595227. This tutorial provides an overview of tools to measure body composition at the bedside as part of a comprehensive nutritional assessment.

    Article  PubMed  Google Scholar 

  13. Forbes GB. Human body composition: growth, aging, nutrition, and activity. New York: Springer-Verlag; 1987.

    Book  Google Scholar 

  14. Das SK. Body composition measurement in severe obesity. Curr Opin Clin Nutr Metab Care. 2005;8(6):602–6.

    Article  PubMed  Google Scholar 

  15. Das SK, Roberts SB, Kehayias JJ, Wang J, Hsu LK, Shikora SA, et al. Body composition assessment in extreme obesity and after massive weight loss induced by gastric bypass surgery. Am J Physiol Endocrinol Metab. 2003;284(6):E1080–8. doi:10.1152/ajpendo.00185.2002.

    Article  CAS  PubMed  Google Scholar 

  16. Lukaski HC. Evolution of bioimpedance: a circuitous journey from estimation of physiological function to assessment of body composition and a return to clinical research. Eur J Clin Nutr. 2013;67 Suppl 1:S2–9. doi:10.1038/ejcn.2012.149. This paper provides the reader with a comprehensive overview of BIA, from the historical development to modern day applications.

    Article  PubMed  Google Scholar 

  17. Deurenberg P. Limitations of the bioelectrical impedance method for the assessment of body fat in severe obesity. Am J Clin Nutr. 1996;64(3 Suppl):449S–52.

    CAS  PubMed  Google Scholar 

  18. Petak S, Barbu CG, Yu EW, Fielding R, Mulligan K, Sabowitz B, et al. The official positions of the international society for clinical densitometry: body composition analysis reporting. J Clin Densitom. 2013;16(4):508–19. doi:10.1016/j.jocd.2013.08.018.

    Article  PubMed  Google Scholar 

  19. Ormsbee MJ, Prado CM, Ilich JZ, Purcell S, Siervo M, Folsom A, et al. Osteosarcopenic obesity: the role of bone, muscle, and fat on health. J Cachexia Sarcopenia Muscle. 2014;5(3):183–92. doi:10.1007/s13539-014-0146-x.

    Article  PubMed  PubMed Central  Google Scholar 

  20. de Freitas Junior WR, Ilias EJ, Kassab P, Cordts R, Porto PG, Martins Rodrigues FC, et al. Assessment of the body composition and the loss of fat-free mass through bioelectric impedance analysis in patients who underwent open gastric bypass. Scientific World Journal. 2014;2014:843253. doi:10.1155/2014/843253.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Frankenfield DC, Rowe WA, Cooney RN, Smith JS, Becker D. Limits of body mass index to detect obesity and predict body composition. Nutrition. 2011;17(1):26–30.

    Article  Google Scholar 

  22. Nicoletti CF, Camelo Jr JS, dos Santos JE, Marchini JS, Salgado Jr W, Nonino CB. Bioelectrical impedance vector analysis in obese women before and after bariatric surgery: changes in body composition. Nutrition. 2014;30(5):569–74. doi:10.1016/j.nut.2013.10.013.

    Article  PubMed  Google Scholar 

  23. Strain GW, Gagner M, Pomp A, Dakin G, Inabnet WB, Saif T. Comparison of fat-free mass in super obesity (BMI ≥50 kg/m2) and morbid obesity (BMI <50 kg/m2) in response to different weight loss surgeries. Surg Obes Relat Dis. 2012;8(3):255–9. doi:10.1016/j.soard.2011.09.028.

    Article  PubMed  Google Scholar 

  24. Iannelli A, Martini F, Rodolphe A, Schneck AS, Gual P, Tran A, et al. Body composition, anthropometrics, energy expenditure, systemic inflammation, in premenopausal women 1 year after laparoscopic Roux-en-Y gastric bypass. Surg Endosc. 2014;28(2):500–7. doi:10.1007/s00464-013-3191-1.

    Article  PubMed  Google Scholar 

  25. Carver TE, Christou NV, Andersen RE. In vivo precision of the GE iDXA for the assessment of total body composition and fat distribution in severely obese patients. Obesity (Silver Spring). 2013;21(7):1367–9. doi:10.1002/oby.20323.

    Article  Google Scholar 

  26. Ciangura C, Bouillot JL, Lloret-Linares C, Poitou C, Veyrie N, Basdevant A, et al. Dynamics of change in total and regional body composition after gastric bypass in obese patients. Obesity (Silver Spring). 2010;18(4):760–5. doi:10.1038/oby.2009.348.

    Article  Google Scholar 

  27. Rothney MP, Brychta RJ, Schaefer EV, Chen KY, Skarulis MC. Body composition measured by dual-energy X-ray absorptiometry half-body scans in obese adults. Obesity (Silver Spring). 2009;17(6):1281–6. doi:10.1038/oby.2009.14.

    Google Scholar 

  28. Coupaye M, Bouillot JL, Poitou C, Schutz Y, Basdevant A, Oppert JM. Is lean body mass decreased after obesity treatment by adjustable gastric banding? Obes Surg. 2007;17(4):427–33. doi:10.1007/s11695-007-9072-8.

    Article  PubMed  Google Scholar 

  29. Bedogni G, Agosti F, De Col A, Marazzi N, Tagliaferri A, Sartorio A. Comparison of dual-energy X-ray absorptiometry, air displacement plethysmography and bioelectrical impedance analysis for the assessment of body composition in morbidly obese women. Eur J Clin Nutr. 2013;67(11):1129–32. doi:10.1038/ejcn.2013.159.

    Article  CAS  PubMed  Google Scholar 

  30. Faria SL, Faria OP, Cardeal MD, Ito MK. Validation study of multi-frequency bioelectrical impedance with dual-energy X-ray absorptiometry among obese patients. Obes Surg. 2014;24(9):1476–80. doi:10.1007/s11695-014-1190-5. This cross-sectional validation study demonstrated that although BIA can be conducted safely in women with class II/III obesity, body composition measurements vary from DXA measurements.

    Article  PubMed  Google Scholar 

  31. Shafer KJ, Siders WA, Johnson LK, Lukaski HC. Validity of segmental multiple-frequency bioelectrical impedance analysis to estimate body composition of adults across a range of body mass indexes. Nutrition. 2009;25(1):25–32. doi:10.1016/j.nut.2008.07.004.

    Article  PubMed  Google Scholar 

  32. Gallagher D, Heymsfield SB, Heo M, Jebb SA, Murgatroyd PR, Sakamoto Y. Healthy percentage body fat ranges: an approach for developing guidelines based on body mass index. Am J Clin Nutr. 2000;72(3):694–701.

    CAS  PubMed  Google Scholar 

  33. Gonzalez-Correa CH, Caicedo-Eraso JC. Bioelectrical impedance analysis (BIA): a proposal for standardization of classical method in adults. J Phys. 2012;407. 10.1088/1742-6596/407/1/012018.

  34. US Department of Health and Human Services. Anthropometric reference data for children and adults: United States, 2007–2010. Vital and Health Statistics. 2012; Series 11(252).

  35. Nana A, Slater GJ, Hopkins WG, Burke LM. Techniques for undertaking dual-energy X-ray absorptiometry whole-body scans to estimate body composition in tall and/or broad subjects. Int J Sport Nutr Exerc Metab. 2012;22(5):313–22.

    Article  PubMed  Google Scholar 

  36. Center for Disease Control. National Health and Nutrition Examination Survey (NHANES) body composition procedures manual. 2011–2012.

  37. Tataranni PA, Ravussin E. Use of dual-energy X-ray absorptiometry in obese individuals. Am J Clin Nutr. 1995;62(4):730–4.

    CAS  PubMed  Google Scholar 

  38. Chaston TB, Dixon JB, O’Brien PE. Changes in fat-free mass during significant weight loss: a systematic review. Int J Obes (Lond). 2007;31(5):743–50. doi:10.1038/sj.ijo.0803483.

    CAS  Google Scholar 

  39. Hologic, Inc. Weight limits of Hologic full body dual energy X-ray absorptiometers. Personal Communication, dxasupport@hologic.com 16 May 2016.

  40. Hologic, Inc. Horizon DXA system product specifications DS-00382. Hologic Inc: Bedford MA; 2013.

  41. Hologic, Inc. QDR Series technical specifications manual MAN-00216-006-01. Hologic Inc: Bedford MA; 2007.

  42. GE Healthcare. DXA for metabolic health. Madison WI. 2016. http://www3.gehealthcare.com/en/products/categories/metabolic_health/dxa_for_metabolic_health. Accessed 01 Feb 2016

Download references

Acknowledgments

The authors appreciate the support of Drs. Catherine Field and Sarah Elliott for their review of an earlier draft of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Carlene A. Johnson Stoklossa or Carla M. Prado.

Ethics declarations

Conflict of Interest

Carlene A. Johnson Stoklossa, Mary Forhan, Raj S. Padwal, Maria Cristina Gonzalez, and Carla M. Prado declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Metabolism

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnson Stoklossa, C.A., Forhan, M., Padwal, R.S. et al. Practical Considerations for Body Composition Assessment of Adults with Class II/III Obesity Using Bioelectrical Impedance Analysis or Dual-Energy X-Ray Absorptiometry. Curr Obes Rep 5, 389–396 (2016). https://doi.org/10.1007/s13679-016-0228-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13679-016-0228-5

Navigation