Skip to main content

Advertisement

Log in

Immune and Inflammatory Reponses to Staphylococcus aureus Skin Infections

  • Immunology (D Lee, Section Editor)
  • Published:
Current Dermatology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

There have been recent advances in our understanding of cutaneous immune responses to the important human skin pathogen, Staphylococcus aureus (S. aureus). This review will highlight these insights into innate and adaptive immune mechanisms in host defense and cutaneous inflammation in response to S. aureus skin infections.

Recent Findings

Antimicrobial peptides, pattern recognition receptors, and inflammasome activation function in innate immunity as well as T cells and their effector cytokines play a key role in adaptive immunity against S. aureus skin infections. In addition, certain mechanisms by which S. aureus contributes to aberrant cutaneous inflammation, such as in flares of the inflammatory skin disease atopic dermatitis, have also been identified.

Summary

These cutaneous immune mechanisms could provide new targets for future vaccines and immune-based therapies to combat skin infections and cutaneous inflammation caused by S. aureus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Daum RS. Clinical practice. Skin and soft-tissue infections caused by methicillin-resistant Staphylococcus aureus. N Engl J Med. 2007;357(4):380–90. https://doi.org/10.1056/NEJMcp070747.

    Article  CAS  PubMed  Google Scholar 

  2. Elston DM. Community-acquired methicillin-resistant Staphylococcus aureus. J Am Acad Dermatol. 2007;56(1):1–16; quiz 7-20. https://doi.org/10.1016/j.jaad.2006.04.018.

    Article  PubMed  Google Scholar 

  3. Miller LS, Cho JS. Immunity against Staphylococcus aureus cutaneous infections. Nat Rev Immunol. 2011;11(8):505–18. https://doi.org/10.1038/nri3010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Edelsberg J, Taneja C, Zervos M, Haque N, Moore C, Reyes K, et al. Trends in US hospital admissions for skin and soft tissue infections. Emerg Infect Dis. 2009;15(9):1516–8. https://doi.org/10.3201/eid1509.081228.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hersh AL, Chambers HF, Maselli JH, Gonzales R. National trends in ambulatory visits and antibiotic prescribing for skin and soft-tissue infections. Arch Intern Med. 2008;168(14):1585–91. https://doi.org/10.1001/archinte.168.14.1585.

    Article  PubMed  Google Scholar 

  6. Suaya JA, Mera RM, Cassidy A, O'Hara P, Amrine-Madsen H, Burstin S, et al. Incidence and cost of hospitalizations associated with Staphylococcus aureus skin and soft tissue infections in the United States from 2001 through 2009. BMC Infect Dis. 2014;14:296. https://doi.org/10.1186/1471-2334-14-296.

    Article  PubMed  PubMed Central  Google Scholar 

  7. DeLeo FR, Otto M, Kreiswirth BN, Chambers HF. Community-associated methicillin-resistant Staphylococcus aureus. Lancet. 2010;375(9725):1557–68. https://doi.org/10.1016/S0140-6736(09)61999-1.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG Jr. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 2015;28(3):603–61. https://doi.org/10.1128/CMR.00134-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tong SY, Chen LF, Fowler VG Jr. Colonization, pathogenicity, host susceptibility, and therapeutics for Staphylococcus aureus: what is the clinical relevance? Semin Immunopathol. 2012;34(2):185–200. https://doi.org/10.1007/s00281-011-0300-x.

    Article  PubMed  Google Scholar 

  10. Yang ES, Tan J, Eells S, Rieg G, Tagudar G, Miller LG. Body site colonization in patients with community-associated methicillin-resistant Staphylococcus aureus and other types of S. aureus skin infections. Clin Microbiol Infect. 2010;16(5):425–31. https://doi.org/10.1111/j.1469-0691.2009.02836.x.

    Article  CAS  PubMed  Google Scholar 

  11. Byrd AL, Deming C, Cassidy SKB, Harrison OJ, Ng WI, Conlan S, et al. Staphylococcus aureus and Staphylococcus epidermidis strain diversity underlying pediatric atopic dermatitis. Sci Transl Med. 2017;9(397):eaal4651. https://doi.org/10.1126/scitranslmed.aal4651.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kong HH, Oh J, Deming C, Conlan S, Grice EA, Beatson MA, et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 2012;22(5):850–9. https://doi.org/10.1101/gr.131029.111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Drucker AM, Wang AR, Li WQ, Sevetson E, Block JK, Qureshi AA. The burden of atopic dermatitis: summary of a report for the National Eczema Association. J Invest Dermatol. 2017;137(1):26–30. https://doi.org/10.1016/j.jid.2016.07.012.

    Article  CAS  PubMed  Google Scholar 

  14. Weidinger S, Beck LA, Bieber T, Kabashima K, Irvine AD. Atopic dermatitis. Nat Rev Dis Primers. 2018;4(1):1. https://doi.org/10.1038/s41572-018-0001-z.

    Article  PubMed  Google Scholar 

  15. Wesch D, Peters C, Oberg HH, Pietschmann K, Kabelitz D. Modulation of γδ T cell responses by TLR ligands. Cell Mol Life Sci. 2011;68(14):2357–70. https://doi.org/10.1007/s00018-011-0699-1.

    Article  CAS  PubMed  Google Scholar 

  16. Hepburn L, Hijnen DJ, Sellman BR, Mustelin T, Sleeman MA, May RD, et al. The complex biology and contribution of Staphylococcus aureus in atopic dermatitis, current and future therapies. Br J Dermatol. 2017;177(1):63–71. https://doi.org/10.1111/bjd.15139.

    Article  CAS  PubMed  Google Scholar 

  17. Ong PY, Leung DY. Bacterial and viral infections in atopic dermatitis: a comprehensive review. Clin Rev Allergy Immunol. 2016;51(3):329–37. https://doi.org/10.1007/s12016-016-8548-5.

    Article  CAS  PubMed  Google Scholar 

  18. Spaulding AR, Salgado-Pabon W, Kohler PL, Horswill AR, Leung DY, Schlievert PM. Staphylococcal and streptococcal superantigen exotoxins. Clin Microbiol Rev. 2013;26(3):422–47. https://doi.org/10.1128/CMR.00104-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Daum RS, Spellberg B. Progress toward a Staphylococcus aureus vaccine. Clin Infect Dis. 2012;54(4):560–7. https://doi.org/10.1093/cid/cir828.

    Article  CAS  PubMed  Google Scholar 

  20. Fowler VG, Allen KB, Moreira ED, Moustafa M, Isgro F, Boucher HW, et al. Effect of an investigational vaccine for preventing Staphylococcus aureus infections after cardiothoracic surgery: a randomized trial. JAMA. 2013;309(13):1368–78. https://doi.org/10.1001/jama.2013.3010.

    Article  CAS  PubMed  Google Scholar 

  21. Fowler VG Jr, Proctor RA. Where does a Staphylococcus aureus vaccine stand? Clin Microbiol Infect. 2014;20(Suppl 5):66–75. https://doi.org/10.1111/1469-0691.12570.

    Article  PubMed  PubMed Central  Google Scholar 

  22. McNeely TB, Shah NA, Fridman A, Joshi A, Hartzel JS, Keshari RS, et al. Mortality among recipients of the Merck V710 Staphylococcus aureus vaccine after postoperative S. aureus infections: an analysis of possible contributing host factors. Hum Vaccin Immunother. 2014;10(12):3513–6. https://doi.org/10.4161/hv.34407.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Missiakas D, Schneewind O. Staphylococcus aureus vaccines: deviating from the carol. J Exp Med. 2016;213(9):1645–53. https://doi.org/10.1084/jem.20160569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rohrl J, Huber B, Koehl GE, Geissler EK, Hehlgans T. Mouse β-defensin 14 (Defb14) promotes tumor growth by inducing angiogenesis in a CCR6-dependent manner. J Immunol. 2012;188(10):4931–9. https://doi.org/10.4049/jimmunol.1102442.

    Article  CAS  PubMed  Google Scholar 

  25. Harder J, Bartels J, Christophers E, Schroder JM. Isolation and characterization of human β-defensin-3, a novel human inducible peptide antibiotic. J Biol Chem. 2001;276(8):5707–13. https://doi.org/10.1074/jbc.M008557200.

    Article  CAS  PubMed  Google Scholar 

  26. Kisich KO, Howell MD, Boguniewicz M, Heizer HR, Watson NU, Leung DY. The constitutive capacity of human keratinocytes to kill Staphylococcus aureus is dependent on β-defensin 3. J Invest Dermatol. 2007;127(10):2368–80. https://doi.org/10.1038/sj.jid.5700861.

    Article  CAS  PubMed  Google Scholar 

  27. Ong PY, Ohtake T, Brandt C, Strickland I, Boguniewicz M, Ganz T, et al. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med. 2002;347(15):1151–60. https://doi.org/10.1056/NEJMoa021481.

    Article  CAS  PubMed  Google Scholar 

  28. Schroder JM, Harder J. Human β-defensin-2. Int J Biochem Cell Biol. 1999;31(6):645–51.

    Article  CAS  PubMed  Google Scholar 

  29. Zanger P, Holzer J, Schleucher R, Scherbaum H, Schittek B, Gabrysch S. Severity of Staphylococcus aureus infection of the skin is associated with inducibility of human β-defensin 3 but not human β-defensin 2. Infect Immun. 2010;78(7):3112–7. https://doi.org/10.1128/IAI.00078-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rohrl J, Yang D, Oppenheim JJ, Hehlgans T. Human β-defensin 2 and 3 and their mouse orthologs induce chemotaxis through interaction with CCR2. J Immunol. 2010;184(12):6688–94. https://doi.org/10.4049/jimmunol.0903984.

    Article  CAS  PubMed  Google Scholar 

  31. Niyonsaba F, Iwabuchi K, Matsuda H, Ogawa H, Nagaoka I. Epithelial cell-derived human β-defensin-2 acts as a chemotaxin for mast cells through a pertussis toxin-sensitive and phospholipase C-dependent pathway. Int Immunol. 2002;14(4):421–6.

    Article  CAS  PubMed  Google Scholar 

  32. Yang D, Chertov O, Bykovskaia SN, Chen Q, Buffo MJ, Shogan J, et al. β-Defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science. 1999;286(5439):525–8.

    Article  CAS  PubMed  Google Scholar 

  33. Braff MH, Zaiou M, Fierer J, Nizet V, Gallo RL. Keratinocyte production of cathelicidin provides direct activity against bacterial skin pathogens. Infect Immun. 2005;73(10):6771–81. https://doi.org/10.1128/IAI.73.10.6771-6781.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Peric M, Koglin S, Kim SM, Morizane S, Besch R, Prinz JC, et al. IL-17A enhances vitamin D3-induced expression of cathelicidin antimicrobial peptide in human keratinocytes. J Immunol. 2008;181(12):8504–12.

    Article  CAS  PubMed  Google Scholar 

  35. Chen K, Xiang Y, Huang J, Gong W, Yoshimura T, Jiang Q, et al. The formylpeptide receptor 2 (Fpr2) and its endogenous ligand cathelin-related antimicrobial peptide (CRAMP) promote dendritic cell maturation. J Biol Chem. 2014;289(25):17553–63. https://doi.org/10.1074/jbc.M113.535674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. De Y, Chen Q, Schmidt AP, Anderson GM, Wang JM, Wooters J, et al. LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J Exp Med. 2000;192(7):1069–74.

    Article  Google Scholar 

  37. Niyonsaba F, Iwabuchi K, Someya A, Hirata M, Matsuda H, Ogawa H, et al. A cathelicidin family of human antibacterial peptide LL-37 induces mast cell chemotaxis. Immunology. 2002;106(1):20–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cho JS, Xuan C, Miller LS. Lucky number seven: RNase 7 can prevent Staphylococcus aureus skin colonization. J Invest Dermatol. 2010;130(12):2703–6. https://doi.org/10.1038/jid.2010.294.

    Article  CAS  PubMed  Google Scholar 

  39. Simanski M, Dressel S, Glaser R, Harder J. RNase 7 protects healthy skin from Staphylococcus aureus colonization. J Invest Dermatol. 2010;130(12):2836–8. https://doi.org/10.1038/jid.2010.217.

    Article  CAS  PubMed  Google Scholar 

  40. Choi SM, McAleer JP, Zheng M, Pociask DA, Kaplan MH, Qin S, et al. Innate Stat3-mediated induction of the antimicrobial protein Reg3γ is required for host defense against MRSA pneumonia. J Exp Med. 2013;210(3):551–61. https://doi.org/10.1084/jem.20120260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lai Y, Li D, Li C, Muehleisen B, Radek KA, Park HJ, et al. The antimicrobial protein REG3A regulates keratinocyte proliferation and differentiation after skin injury. Immunity. 2012;37(1):74–84. https://doi.org/10.1016/j.immuni.2012.04.010.

    Article  CAS  PubMed  Google Scholar 

  42. Rieg S, Steffen H, Seeber S, Humeny A, Kalbacher H, Dietz K, et al. Deficiency of dermcidin-derived antimicrobial peptides in sweat of patients with atopic dermatitis correlates with an impaired innate defense of human skin in vivo. J Immunol. 2005;174(12):8003–10.

    Article  CAS  PubMed  Google Scholar 

  43. Steffen H, Rieg S, Wiedemann I, Kalbacher H, Deeg M, Sahl HG, et al. Naturally processed dermcidin-derived peptides do not permeabilize bacterial membranes and kill microorganisms irrespective of their charge. Antimicrob Agents Chemother. 2006;50(8):2608–20. https://doi.org/10.1128/AAC.00181-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ericksen B, Wu Z, Lu W, Lehrer RI. Antibacterial activity and specificity of the six human α-defensins. Antimicrob Agents Chemother. 2005;49(1):269–75. https://doi.org/10.1128/AAC.49.1.269-275.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Grigat J, Soruri A, Forssmann U, Riggert J, Zwirner J. Chemoattraction of macrophages, T lymphocytes, and mast cells is evolutionarily conserved within the human α-defensin family. J Immunol. 2007;179(6):3958–65.

    Article  CAS  PubMed  Google Scholar 

  46. Nakashige TG, Zhang B, Krebs C, Nolan EM. Human calprotectin is an iron-sequestering host-defense protein. Nat Chem Biol. 2015;11(10):765–71. https://doi.org/10.1038/nchembio.1891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kehl-Fie TE, Chitayat S, Hood MI, Damo S, Restrepo N, Garcia C, et al. Nutrient metal sequestration by calprotectin inhibits bacterial superoxide defense, enhancing neutrophil killing of Staphylococcus aureus. Cell Host Microbe. 2011;10(2):158–64. https://doi.org/10.1016/j.chom.2011.07.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nurjadi D, Herrmann E, Hinderberger I, Zanger P. Impaired β-defensin expression in human skin links DEFB1 promoter polymorphisms with persistent Staphylococcus aureus nasal carriage. J Infect Dis. 2013;207(4):666–74. https://doi.org/10.1093/infdis/jis735.

    Article  CAS  PubMed  Google Scholar 

  49. Menzies BE, Kenoyer A. Signal transduction and nuclear responses in Staphylococcus aureus-induced expression of human β-defensin 3 in skin keratinocytes. Infect Immun. 2006;74(12):6847–54. https://doi.org/10.1128/IAI.00389-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ommori R, Ouji N, Mizuno F, Kita E, Ikada Y, Asada H. Selective induction of antimicrobial peptides from keratinocytes by staphylococcal bacteria. Microb Pathog. 2013;56:35–9. https://doi.org/10.1016/j.micpath.2012.11.005.

    Article  CAS  PubMed  Google Scholar 

  51. Sumikawa Y, Asada H, Hoshino K, Azukizawa H, Katayama I, Akira S, et al. Induction of β-defensin 3 in keratinocytes stimulated by bacterial lipopeptides through toll-like receptor 2. Microbes Infect. 2006;8(6):1513–21. https://doi.org/10.1016/j.micinf.2006.01.008.

    Article  CAS  PubMed  Google Scholar 

  52. Malhotra N, Yoon J, Leyva-Castillo JM, Galand C, Archer N, Miller LS, et al. IL-22 derived from γδ T cells restricts Staphylococcus aureus infection of mechanically injured skin. J Allergy Clin Immunol. 2016;138(4):1098–107 e3. https://doi.org/10.1016/j.jaci.2016.07.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Minegishi Y, Saito M, Nagasawa M, Takada H, Hara T, Tsuchiya S, et al. Molecular explanation for the contradiction between systemic Th17 defect and localized bacterial infection in hyper-IgE syndrome. J Exp Med. 2009;206(6):1291–301. https://doi.org/10.1084/jem.20082767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang R, Braughton KR, Kretschmer D, Bach TH, Queck SY, Li M, et al. Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA. Nat Med. 2007;13(12):1510–4. https://doi.org/10.1038/nm1656.

    Article  CAS  PubMed  Google Scholar 

  55. Miller LS, Sorensen OE, Liu PT, Jalian HR, Eshtiaghpour D, Behmanesh BE, et al. TGF-α regulates TLR expression and function on epidermal keratinocytes. J Immunol. 2005;174(10):6137–43.

    Article  CAS  PubMed  Google Scholar 

  56. Sorensen OE, Thapa DR, Roupe KM, Valore EV, Sjobring U, Roberts AA, et al. Injury-induced innate immune response in human skin mediated by transactivation of the epidermal growth factor receptor. J Clin Invest. 2006;116(7):1878–85. https://doi.org/10.1172/JCI28422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liu PT, Stenger S, Li H, Wenzel L, Tan BH, Krutzik SR, et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science. 2006;311(5768):1770–3. https://doi.org/10.1126/science.1123933.

    Article  CAS  PubMed  Google Scholar 

  58. Schauber J, Dorschner RA, Coda AB, Buchau AS, Liu PT, Kiken D, et al. Injury enhances TLR2 function and antimicrobial peptide expression through a vitamin D-dependent mechanism. J Clin Invest. 2007;117(3):803–11. https://doi.org/10.1172/JCI30142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang JW, Hogan PG, Hunstad DA, Fritz SA. Vitamin D sufficiency and Staphylococcus aureus infection in children. Pediatr Infect Dis J. 2015;34(5):544–5. https://doi.org/10.1097/INF.0000000000000667.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Miller LS. Adipocytes armed against Staphylococcus aureus. N Engl J Med. 2015;372(14):1368–70. https://doi.org/10.1056/NEJMcibr1500271.

    Article  CAS  PubMed  Google Scholar 

  61. •• Zhang LJ, Guerrero-Juarez CF, Hata T, Bapat SP, Ramos R, Plikus MV, et al. Innate immunity. Dermal adipocytes protect against invasive Staphylococcus aureus skin infection. Science. 2015;347(6217):67–71. https://doi.org/10.1126/science.1260972 This manuscript found that dermal adipocytes produce the antimicrobial peptide cathelicidin to promote clearance of a S. aureus skin infection in the deep dermis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kisich KO, Carspecken CW, Fieve S, Boguniewicz M, Leung DY. Defective killing of Staphylococcus aureus in atopic dermatitis is associated with reduced mobilization of human β-defensin-3. J Allergy Clin Immunol. 2008;122(1):62–8. https://doi.org/10.1016/j.jaci.2008.04.022.

    Article  CAS  PubMed  Google Scholar 

  63. Nilsen NJ, Deininger S, Nonstad U, Skjeldal F, Husebye H, Rodionov D, et al. Cellular trafficking of lipoteichoic acid and Toll-like receptor 2 in relation to signaling: role of CD14 and CD36. J Leukoc Biol. 2008;84(1):280–91. https://doi.org/10.1189/jlb.0907656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Triantafilou M, Gamper FG, Haston RM, Mouratis MA, Morath S, Hartung T, et al. Membrane sorting of toll-like receptor (TLR)-2/6 and TLR2/1 heterodimers at the cell surface determines heterotypic associations with CD36 and intracellular targeting. J Biol Chem. 2006;281(41):31002–11. https://doi.org/10.1074/jbc.M602794200.

    Article  CAS  PubMed  Google Scholar 

  65. Hoebe K, Georgel P, Rutschmann S, Du X, Mudd S, Crozat K, et al. CD36 is a sensor of diacylglycerides. Nature. 2005;433(7025):523–7. https://doi.org/10.1038/nature03253.

    Article  CAS  PubMed  Google Scholar 

  66. Stappers MH, Thys Y, Oosting M, Plantinga TS, Ioana M, Reimnitz P, et al. TLR1, TLR2, and TLR6 gene polymorphisms are associated with increased susceptibility to complicated skin and skin structure infections. J Infect Dis. 2014;210(2):311–8. https://doi.org/10.1093/infdis/jiu080.

    Article  CAS  PubMed  Google Scholar 

  67. Cho JS, Guo Y, Ramos RI, Hebroni F, Plaisier SB, Xuan C, et al. Neutrophil-derived IL-1β is sufficient for abscess formation in immunity against Staphylococcus aureus in mice. PLoS Pathog. 2012;8(11):e1003047. https://doi.org/10.1371/journal.ppat.1003047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Miller LS, O'Connell RM, Gutierrez MA, Pietras EM, Shahangian A, Gross CE, et al. MyD88 mediates neutrophil recruitment initiated by IL-1R but not TLR2 activation in immunity against Staphylococcus aureus. Immunity. 2006;24(1):79–91. https://doi.org/10.1016/j.immuni.2005.11.011.

    Article  CAS  PubMed  Google Scholar 

  69. Miller LS. Toll-like receptors in skin. Adv Dermatol. 2008;24:71–87.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Pohar J, Yamamoto C, Fukui R, Cajnko MM, Miyake K, Jerala R, et al. Selectivity of human TLR9 for double CpG motifs and implications for the recognition of genomic DNA. J Immunol. 2017;198(5):2093–104. https://doi.org/10.4049/jimmunol.1600757.

    Article  CAS  PubMed  Google Scholar 

  71. Nurjadi D, Heeg K, Weber ANR, Zanger P. Toll-like receptor 9 (TLR-9) promotor polymorphisms and gene expression are associated with persistent Staphylococcus aureus nasal carriage. Clin Microbiol Infect. 2018. https://doi.org/10.1016/j.cmi.2018.02.014.

    Article  PubMed  Google Scholar 

  72. • Scumpia PO, Botten GA, Norman JS, Kelly-Scumpia KM, Spreafico R, Ruccia AR, et al. Opposing roles of Toll-like receptor and cytosolic DNA-STING signaling pathways for Staphylococcus aureus cutaneous host defense. PLoS Pathog. 2017;13(7):e1006496. https://doi.org/10.1371/journal.ppat.1006496 This study demonstrated that the DNA sensor STING functions to suppress protective TLR-mediated immune responses against a S. aureus skin infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Muller-Anstett MA, Muller P, Albrecht T, Nega M, Wagener J, Gao Q, et al. Staphylococcal peptidoglycan co-localizes with Nod2 and TLR2 and activates innate immune response via both receptors in primary murine keratinocytes. PLoS One. 2010;5(10):e13153. https://doi.org/10.1371/journal.pone.0013153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Roth SA, Simanski M, Rademacher F, Schroder L, Harder J. The pattern recognition receptor NOD2 mediates Staphylococcus aureus-induced IL-17C expression in keratinocytes. J Invest Dermatol. 2014;134(2):374–80. https://doi.org/10.1038/jid.2013.313.

    Article  CAS  PubMed  Google Scholar 

  75. Hruz P, Zinkernagel AS, Jenikova G, Botwin GJ, Hugot JP, Karin M, et al. NOD2 contributes to cutaneous defense against Staphylococcus aureus through α-toxin-dependent innate immune activation. Proc Natl Acad Sci U S A. 2009;106(31):12873–8. https://doi.org/10.1073/pnas.0904958106.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Cho JS, Zussman J, Donegan NP, Ramos RI, Garcia NC, Uslan DZ, et al. Noninvasive in vivo imaging to evaluate immune responses and antimicrobial therapy against Staphylococcus aureus and USA300 MRSA skin infections. J Invest Dermatol. 2011;131(4):907–15. https://doi.org/10.1038/jid.2010.417.

    Article  CAS  PubMed  Google Scholar 

  77. Miller LS, Pietras EM, Uricchio LH, Hirano K, Rao S, Lin H, et al. Inflammasome-mediated production of IL-1β is required for neutrophil recruitment against Staphylococcus aureus in vivo. J Immunol. 2007;179(10):6933–42.

    Article  CAS  PubMed  Google Scholar 

  78. Munoz-Planillo R, Franchi L, Miller LS, Nunez G. A critical role for hemolysins and bacterial lipoproteins in Staphylococcus aureus-induced activation of the Nlrp3 inflammasome. J Immunol. 2009;183(6):3942–8. https://doi.org/10.4049/jimmunol.0900729.

    Article  CAS  PubMed  Google Scholar 

  79. Franchi L, Munoz-Planillo R, Nunez G. Sensing and reacting to microbes through the inflammasomes. Nat Immunol. 2012;13(4):325–32. https://doi.org/10.1038/ni.2231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Guo H, Callaway JB, Ting JP. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med. 2015;21(7):677–87. https://doi.org/10.1038/nm.3893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Schroder K, Tschopp J. The inflammasomes. Cell. 2010;140(6):821–32. https://doi.org/10.1016/j.cell.2010.01.040.

    Article  CAS  PubMed  Google Scholar 

  82. Craven RR, Gao X, Allen IC, Gris D, Bubeck Wardenburg J, McElvania-Tekippe E, et al. Staphylococcus aureus α-hemolysin activates the NLRP3-inflammasome in human and mouse monocytic cells. PLoS One. 2009;4(10):e7446. https://doi.org/10.1371/journal.pone.0007446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Franchi L, Kanneganti TD, Dubyak GR, Nunez G. Differential requirement of P2X7 receptor and intracellular K+ for caspase-1 activation induced by intracellular and extracellular bacteria. J Biol Chem. 2007;282(26):18810–8. https://doi.org/10.1074/jbc.M610762200.

    Article  CAS  PubMed  Google Scholar 

  84. Holzinger D, Gieldon L, Mysore V, Nippe N, Taxman DJ, Duncan JA, et al. Staphylococcus aureus Panton-Valentine leukocidin induces an inflammatory response in human phagocytes via the NLRP3 inflammasome. J Leukoc Biol. 2012;92(5):1069–81. https://doi.org/10.1189/jlb.0112014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Mariathasan S, Weiss DS, Newton K, McBride J, O’Rourke K, Roose-Girma M, et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature. 2006;440(7081):228–32. https://doi.org/10.1038/nature04515.

    Article  CAS  PubMed  Google Scholar 

  86. Shimada T, Park BG, Wolf AJ, Brikos C, Goodridge HS, Becker CA, et al. Staphylococcus aureus evades lysozyme-based peptidoglycan digestion that links phagocytosis, inflammasome activation, and IL-1β secretion. Cell Host Microbe. 2010;7(1):38–49. https://doi.org/10.1016/j.chom.2009.12.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Niebuhr M, Baumert K, Heratizadeh A, Satzger I, Werfel T. Impaired NLRP3 inflammasome expression and function in atopic dermatitis due to Th2 milieu. Allergy. 2014;69(8):1058–67. https://doi.org/10.1111/all.12428.

    Article  CAS  PubMed  Google Scholar 

  88. Spaan AN, Surewaard BG, Nijland R, van Strijp JA. Neutrophils versus Staphylococcus aureus: a biological tug of war. Annu Rev Microbiol. 2013;67:629–50. https://doi.org/10.1146/annurev-micro-092412-155746.

    Article  CAS  PubMed  Google Scholar 

  89. Thammavongsa V, Kim HK, Missiakas D, Schneewind O. Staphylococcal manipulation of host immune responses. Nat Rev Microbiol. 2015;13(9):529–43. https://doi.org/10.1038/nrmicro3521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Aman MJ, Adhikari RP. Staphylococcal bicomponent pore-forming toxins: targets for prophylaxis and immunotherapy. Toxins (Basel). 2014;6(3):950–72. https://doi.org/10.3390/toxins6030950.

    Article  CAS  Google Scholar 

  91. Anderson AS, Miller AA, Donald RG, Scully IL, Nanra JS, Cooper D, et al. Development of a multicomponent Staphylococcus aureus vaccine designed to counter multiple bacterial virulence factors. Hum Vaccin Immunother. 2012;8(11):1585–94. https://doi.org/10.4161/hv.21872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bagnoli F. Staphylococcus aureus toxin antibodies: good companions of antibiotics and vaccines. Virulence. 2017;8(7):1037–42. https://doi.org/10.1080/21505594.2017.1295205.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Rouha H, Badarau A, Visram ZC, Battles MB, Prinz B, Magyarics Z, et al. Five birds, one stone: neutralization of α-hemolysin and 4 bi-component leukocidins of Staphylococcus aureus with a single human monoclonal antibody. MAbs. 2015;7(1):243–54. https://doi.org/10.4161/19420862.2014.985132.

    Article  CAS  PubMed  Google Scholar 

  94. Milner JD, Brenchley JM, Laurence A, Freeman AF, Hill BJ, Elias KM, et al. Impaired T(H)17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature. 2008;452(7188):773–6. https://doi.org/10.1038/nature06764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Levy R, Okada S, Beziat V, Moriya K, Liu C, Chai LY, et al. Genetic, immunological, and clinical features of patients with bacterial and fungal infections due to inherited IL-17RA deficiency. Proc Natl Acad Sci U S A. 2016;113(51):E8277–E85. https://doi.org/10.1073/pnas.1618300114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Puel A, Cypowyj S, Bustamante J, Wright JF, Liu L, Lim HK, et al. Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science. 2011;332(6025):65–8. https://doi.org/10.1126/science.1200439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Graber CJ, Jacobson MA, Perdreau-Remington F, Chambers HF, Diep BA. Recurrence of skin and soft tissue infection caused by methicillin-resistant Staphylococcus aureus in a HIV primary care clinic. J Acquir Immune Defic Syndr. 2008;49(2):231–3. https://doi.org/10.1097/QAI.0b013e318183a947.

    Article  PubMed  Google Scholar 

  98. Vyas KJ, Shadyab AH, Lin CD, Crum-Cianflone NF. Trends and factors associated with initial and recurrent methicillin-resistant Staphylococcus aureus (MRSA) skin and soft-tissue infections among HIV-infected persons: an 18-year study. J Int Assoc Provid AIDS Care. 2014;13(3):206–13. https://doi.org/10.1177/2325957412473780.

    Article  PubMed  Google Scholar 

  99. Chan LC, Chaili S, Filler SG, Barr K, Wang H, Kupferwasser D, et al. Nonredundant roles of interleukin-17A (IL-17A) and IL-22 in murine host defense against cutaneous and hematogenous infection due to methicillin-resistant Staphylococcus aureus. Infect Immun. 2015;83(11):4427–37. https://doi.org/10.1128/IAI.01061-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Cho JS, Pietras EM, Garcia NC, Ramos RI, Farzam DM, Monroe HR, et al. IL-17 is essential for host defense against cutaneous Staphylococcus aureus infection in mice. J Clin Invest. 2010;120(5):1762–73. https://doi.org/10.1172/JCI40891.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Maher BM, Mulcahy ME, Murphy AG, Wilk M, O'Keeffe KM, Geoghegan JA, et al. Nlrp-3-driven interleukin 17 production by γδ T cells controls infection outcomes during Staphylococcus aureus surgical site infection. Infect Immun. 2013;81(12):4478–89. https://doi.org/10.1128/IAI.01026-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Myles IA, Fontecilla NM, Valdez PA, Vithayathil PJ, Naik S, Belkaid Y, et al. Signaling via the IL-20 receptor inhibits cutaneous production of IL-1β and IL-17A to promote infection with methicillin-resistant Staphylococcus aureus. Nat Immunol. 2013;14(8):804–11. https://doi.org/10.1038/ni.2637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Tkaczyk C, Hamilton MM, Datta V, Yang XP, Hilliard JJ, Stephens GL, et al. Staphylococcus aureus alpha toxin suppresses effective innate and adaptive immune responses in a murine dermonecrosis model. PLoS One. 2013;8(10):e75103. https://doi.org/10.1371/journal.pone.0075103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Montgomery CP, Daniels M, Zhao F, Alegre ML, Chong AS, Daum RS. Protective immunity against recurrent Staphylococcus aureus skin infection requires antibody and interleukin-17A. Infect Immun. 2014;82(5):2125–34. https://doi.org/10.1128/IAI.01491-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ishigame H, Kakuta S, Nagai T, Kadoki M, Nambu A, Komiyama Y, et al. Differential roles of interleukin-17A and -17F in host defense against mucoepithelial bacterial infection and allergic responses. Immunity. 2009;30(1):108–19. https://doi.org/10.1016/j.immuni.2008.11.009.

    Article  CAS  PubMed  Google Scholar 

  106. • Archer NK, Adappa ND, Palmer JN, Cohen NA, Harro JM, Lee SK, et al. Interleukin-17A (IL-17A) and IL-17F are critical for antimicrobial peptide production and clearance of Staphylococcus aureus nasal colonization. Infect Immun. 2016;84(12):3575–83. https://doi.org/10.1128/IAI.00596-16 This paper demonstrates that IL-17 responses promote antimicrobial peptide production and neutrophil recruitment to promote clearance of S. aureus nasal colonization.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Archer NK, Harro JM, Shirtliff ME. Clearance of Staphylococcus aureus nasal carriage is T cell dependent and mediated through interleukin-17A expression and neutrophil influx. Infect Immun. 2013;81(6):2070–5. https://doi.org/10.1128/IAI.00084-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Patel DD, Kuchroo VK. Th17 cell pathway in human immunity: lessons from genetics and therapeutic interventions. Immunity. 2015;43(6):1040–51. https://doi.org/10.1016/j.immuni.2015.12.003.

    Article  CAS  PubMed  Google Scholar 

  109. •• Utay NS, Roque A, Timmer JK, Morcock DR, DeLeage C, Somasunderam A, et al. MRSA infections in HIV-infected people are associated with decreased MRSA-specific Th1 immunity. PLoS Pathog. 2016;12(4):e1005580. https://doi.org/10.1371/journal.ppat.1005580 This study demonstrated that protection against S. aureus skin infections in patients with HIV disease were more dependent upon IFNγ than IL-17 responses, providing key evidence in humans that durable protection against S. aureus skin infections involves T cell cytokines other than IL-17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Barin JG, Talor MV, Schaub JA, Diny NL, Hou X, Hoyer M, et al. Collaborative interferon-γ and interleukin-17 signaling protects the oral mucosa from Staphylococcus aureus. Am J Pathol. 2016;186(9):2337–52. https://doi.org/10.1016/j.ajpath.2016.07.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. •• Dillen CA, Pinsker BL, Marusina AI, Merleev AA, Farber ON, Liu H, et al. Clonally expanded γδ T cells protect against Staphylococcus aureus skin reinfection. J Clin Invest. 2018;128(3):1026–42. https://doi.org/10.1172/JCI96481 This paper was the first to demonstrate that a clonal population of γδ T cells expanded following an initial S. aureus skin infection and provided a long-term immunological memory response against a secondary S. aureus skin infection via production of IFNγ and TNF that enhanced neutrophil recruitment to the skin.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Laouini D, Kawamoto S, Yalcindag A, Bryce P, Mizoguchi E, Oettgen H, et al. Epicutaneous sensitization with superantigen induces allergic skin inflammation. J Allergy Clin Immunol. 2003;112(5):981–7. https://doi.org/10.1016/j.jaci.2003.07.007.

    Article  CAS  PubMed  Google Scholar 

  113. •• Liu H, Archer NK, Dillen CA, Wang Y, Ashbaugh AG, Ortines RV, et al. Staphylococcus aureus epicutaneous exposure drives skin inflammation via IL-36-mediated T cell responses. Cell Host Microbe. 2017;22(5):653–66 e5. https://doi.org/10.1016/j.chom.2017.10.006 References 113 and 114 were the first to demonstrate that S. aureus epicutaneous exposure induced IL-36α production by keratinocytes that stimulated T cells to produce IL-17 to promote skin inflammation. This represents a previously unrecognized mechanism by which S. aureus promotes cutaneous inflammation that likely relates to disease flares of atopic dermatitis and potentially other inflammatory skin diseases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. •• Nakagawa S, Matsumoto M, Katayama Y, Oguma R, Wakabayashi S, Nygaard T, et al. Staphylococcus aureus virulent PSMα peptides induce keratinocyte alarmin release to orchestrate IL-17-dependent skin inflammation. Cell Host Microbe. 2017;22(5):667–77 e5. https://doi.org/10.1016/j.chom.2017.10.008 References 113 and 114 were the first to demonstrate that S. aureus epicutaneous exposure induced IL-36α production by keratinocytes that stimulated T cells to produce IL-17 to promote skin inflammation. This represents a previously unrecognized mechanism by which S. aureus promotes cutaneous inflammation that likely relates to disease flares of atopic dermatitis and potentially other inflammatory skin diseases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. • Suarez-Farinas M, Ungar B, Correa da Rosa J, Ewald DA, Rozenblit M, Gonzalez J, et al. RNA sequencing atopic dermatitis transcriptome profiling provides insights into novel disease mechanisms with potential therapeutic implications. J Allergy Clin Immunol. 2015;135(5):1218–27. https://doi.org/10.1016/j.jaci.2015.03.003 This manuscript demonstrated by RNA-sequencing that transcripts for IL-36α and IL-36γ are increased in the affected skin from atopic dermatitis patients, providing evidence that IL-36 responses are involved in the pathogenesis of atopic dermatitis in humans.

    Article  CAS  PubMed  Google Scholar 

  116. Koga C, Kabashima K, Shiraishi N, Kobayashi M, Tokura Y. Possible pathogenic role of Th17 cells for atopic dermatitis. J Invest Dermatol. 2008;128(11):2625–30. https://doi.org/10.1038/jid.2008.111.

    Article  CAS  PubMed  Google Scholar 

  117. Toda M, Leung DY, Molet S, Boguniewicz M, Taha R, Christodoulopoulos P, et al. Polarized in vivo expression of IL-11 and IL-17 between acute and chronic skin lesions. J Allergy Clin Immunol. 2003;111(4):875–81.

    Article  CAS  PubMed  Google Scholar 

  118. Marrakchi S, Guigue P, Renshaw BR, Puel A, Pei XY, Fraitag S, et al. Interleukin-36-receptor antagonist deficiency and generalized pustular psoriasis. N Engl J Med. 2011;365(7):620–8. https://doi.org/10.1056/NEJMoa1013068.

    Article  CAS  PubMed  Google Scholar 

  119. Johnston A, Xing X, Wolterink L, Barnes DH, Yin Z, Reingold L, et al. IL-1 and IL-36 are dominant cytokines in generalized pustular psoriasis. J Allergy Clin Immunol. 2017;140(1):109–20. https://doi.org/10.1016/j.jaci.2016.08.056.

    Article  CAS  PubMed  Google Scholar 

  120. Williams MR, Nakatsuji T, Gallo RL. Staphylococcus aureus: master manipulator of the skin. Cell Host Microbe. 2017;22(5):579–81. https://doi.org/10.1016/j.chom.2017.10.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants R01AR073665 and R01AR069502 (to LSM) from the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the United States National Institutes of Health (NIH). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lloyd S. Miller.

Ethics declarations

Conflict of Interest

L.S.M. has received grant support from MedImmune, Pfizer, Regeneron Pharmaceuticals, Moderna Therapeutics, and Boehringer Ingelheim, is a shareholder of Noveome Biotherapeutics, and is on the scientific advisory board for Integrated Biotherapeutics, which are all developing vaccines and therapeutics against S. aureus infections and inflammatory skin diseases.

Qi Liu and Momina Mazhar declare they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Immunology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Mazhar, M. & Miller, L.S. Immune and Inflammatory Reponses to Staphylococcus aureus Skin Infections. Curr Derm Rep 7, 338–349 (2018). https://doi.org/10.1007/s13671-018-0235-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13671-018-0235-8

Keywords

Navigation