Skip to main content

Advertisement

Log in

Genetic Risk Factors for Development of Atopic Dermatitis: a Systematic Review

  • Epidemiology (R Dellavalle, Section Editor)
  • Published:
Current Dermatology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this study is to systematically review studies conducted between April 2015 and April 2017 for the genetic risks for the development of atopic dermatitis (AD). We sought to identify (1) specific loci and genes associated with AD, (2) the proportion of studies for each gene, and (3) genetic risks that need further investigation.

Recent Findings

Studies have found that genetic predisposition and environmental triggers are involved in the pathogenesis of AD. Thirty-four loci and 46 genes have been identified as genetic risk factors, of which filaggrin gene null mutations and genes in the type 2 T-helper lymphocyte (Th2) signaling pathway have been the most extensively studied.

Summary

Our systematic review found that in the last 2 years, 46 loci and 53 genes have been studied in the development of AD. Genes involved in epidermal barrier, immune regulation, and intracellular functions were identified. We suggest that future research should investigate the intricate interaction of these genes as well as the complex interplay of genetic and environmental factors in the development of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Boguniewicz M, Leung DYM. Atopic dermatitis: a disease of altered skin barrier and immune dysregulation. Immunol Rev. 2011;242(1):233–46. https://doi.org/10.1111/j.1600-065X.2011.01027.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bickers DR, Lim HW, Margolis D, Weinstock MA, Goodman C, Faulkner E, et al. The burden of skin diseases: 2004: a joint project of the American Academy of Dermatology Association and the Society for Investigative Dermatology. J Am Acad Dermatol. 2006;55(3):490–500. https://doi.org/10.1016/j.jaad.2006.05.048.

    Article  PubMed  Google Scholar 

  3. Silverberg JI, Hanifin JM. Adult eczema prevalence and associations with asthma and other health and demographic factors: a US population-based study. J Allergy Clin Immunol. 2013;132(5):1132–8. https://doi.org/10.1016/j.jaci.2013.08.031.

    Article  PubMed  Google Scholar 

  4. Drucker AM, Wang AR, Li W-Q, Sevetson E, Block JK, Qureshi AA. The burden of atopic dermatitis: summary of a report for the National Eczema Association. J Investig Dermatol. 137(1):26–30. https://doi.org/10.1016/j.jid.2016.07.012.

  5. Chamlin SL, Frieden IJ, Williams ML, Chren MM. Effects of atopic dermatitis on young American children and their families. Pediatrics. 2004;114(3):607–11. https://doi.org/10.1542/peds.2004-0374.

    Article  PubMed  Google Scholar 

  6. Silverberg JI, Garg NK, Paller AS, Fishbein AB, Zee PC. Sleep disturbances in adults with eczema are associated with impaired overall health: a US population-based study. J Invest Dermatol. 135(1):56–66. https://doi.org/10.1038/jid.2014.325.

  7. Holm EA, Esmann S, Jemec GB. The handicap caused by atopic dermatitis—sick leave and job avoidance. J Eur Acad Dermatol Venereol. 2006;20(3):255–9. https://doi.org/10.1111/j.1468-3083.2006.01416.x.

    Article  CAS  PubMed  Google Scholar 

  8. Beattie PE, Lewis-Jones MS. A comparative study of impairment of quality of life in children with skin disease and children with other chronic childhood diseases. Br J Dermatol. 2006;155(1):145–51. https://doi.org/10.1111/j.1365-2133.2006.07185.x.

    Article  CAS  PubMed  Google Scholar 

  9. Zuberbier T, Orlow SJ, Paller AS, Taieb A, Allen R, Hernanz-Hermosa JM, et al. Patient perspectives on the management of atopic dermatitis. J Allergy Clin Immunol. 2006;118(1):226–32.

    Article  PubMed  Google Scholar 

  10. Bin L, Leung DYM. Genetic and epigenetic studies of atopic dermatitis. Allergy, Asthma Clin Immunol. 2016;12(1) https://doi.org/10.1186/s13223-016-0158-5.

  11. Barnes KC. An update on the genetics of atopic dermatitis: scratching the surface in 2009. J Allergy Clin Immunol. 2010;125(1):16–31. https://doi.org/10.1016/j.jaci.2009.11.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Strachan DP, Wong HJ, Spector TD. Concordance and interrelationship of atopic diseases and markers of allergic sensitization among adult female twins. J Allergy Clinl Immunol. 108(6):901–7. https://doi.org/10.1067/mai.2001.119408.

  13. Herrant M, Loucoubar C, Boufkhed S, Bassène H, Sarr FD, Baril L, et al. Risk factors associated with asthma, atopic dermatitis and rhinoconjunctivitis in a rural Senegalese cohort. Allergy, Asthma Clin Immunol. 2015;11(1) https://doi.org/10.1186/s13223-015-0090-0.

  14. Kwon JH, Kim E, Chang MH, Park EA, Hong YC, Ha M, et al. Indoor total volatile organic compounds exposure at 6 months followed by atopic dermatitis at 3 years in children. Pediatr Allergy Immunol. 2015;26(4):352–8. https://doi.org/10.1111/pai.12393.

    Article  PubMed  Google Scholar 

  15. Huang CC, Wen HJ, Chen PC, Chiang TL, Lin SJ, Guo YL. Prenatal air pollutant exposure and occurrence of atopic dermatitis. Br J Dermatol. 2015;173(4):981–8. https://doi.org/10.1111/bjd.14039.

    Article  CAS  PubMed  Google Scholar 

  16. Taylor-Robinson DC, Williams H, Pearce A, Law C, Hope S. Do early-life exposures explain why more advantaged children get eczema? Findings from the U.K. Millennium Cohort Study. Br J Dermatol. 2016;174(3):569–78. https://doi.org/10.1111/bjd.14310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McNally NJ, Williams HC, Phillips DR, Smallman-Raynor M, Lewis S, Venn A, et al. Atopic eczema and domestic water hardness. Lancet. 352(9127):527–31. https://doi.org/10.1016/S0140-6736(98)01402-0.

  18. Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. https://doi.org/10.1371/journal.pmed1000097.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Weidinger S, Rodríguez E, Stahl C, Wagenpfeil S, Klopp N, Illig T, et al. Filaggrin mutations strongly predispose to early-onset and extrinsic atopic dermatitis. J Invest Dermatol. 127(3):724–6. https://doi.org/10.1038/sj.jid.5700630.

  20. Gibbs S, Fijneman R, Wiegant J, van Kessel AG, van De Putte P, Backendorf C. Molecular characterization and evolution of the SPRR family of keratinocyte differentiation markers encoding small proline-rich proteins. Genomics. 1993;16(3):630–7. https://doi.org/10.1006/geno.1993.1240.

    Article  CAS  PubMed  Google Scholar 

  21. Contzler R, Favre B, Huber M, Hohl D. Cornulin, a new member of the “fused gene” family, is expressed during epidermal differentiation. J Invest Dermatol. 2005;124(5):990–7. https://doi.org/10.1111/j.0022-202X.2005.23694.x.

    Article  CAS  PubMed  Google Scholar 

  22. Jackson B, Tilli CM, Hardman MJ, Avilion AA, MacLeod MC, Ashcroft GS, et al. Late cornified envelope family in differentiating epithelia—response to calcium and ultraviolet irradiation. J Invest Dermatol. 2005;124(5):1062–70. https://doi.org/10.1111/j.0022-202X.2005.23699.x.

    Article  CAS  PubMed  Google Scholar 

  23. Mandinova A, Atar D, Schafer BW, Spiess M, Aebi U, Heizmann CW. Distinct subcellular localization of calcium binding S100 proteins in human smooth muscle cells and their relocation in response to rises in intracellular calcium. J Cell Sci. 1998;111(Pt 14):2043–54. Doi: unknown

    CAS  PubMed  Google Scholar 

  24. Jinquan T, Vorum H, Larsen CG, Madsen P, Rasmussen HH, Gesser B, et al. Psoriasin: a novel chemotactic protein. J Invest Dermatol. 1996;107(1):5–10. Doi: unknown

    Article  CAS  PubMed  Google Scholar 

  25. Kenmochi N, Suzuki T, Uechi T, Magoori M, Kuniba M, Higa S, et al. The human mitochondrial ribosomal protein genes: mapping of 54 genes to the chromosomes and implications for human disorders. Genomics. 2001;77(1–2):65–70. https://doi.org/10.1006/geno.2001.6622.

    Article  CAS  PubMed  Google Scholar 

  26. Sabatelli P, Gara SK, Grumati P, Urciuolo A, Gualandi F, Curci R, et al. Expression of the collagen VI alpha5 and alpha6 chains in normal human skin and in skin of patients with collagen VI-related myopathies. J Invest Dermatol. 2011;131(1):99–107. https://doi.org/10.1038/jid.2010.284.

    Article  CAS  PubMed  Google Scholar 

  27. Asad S, Winge MCG, Wahlgren CF, Bilcha KD, Nordenskjöld M, Taylan F, et al. The tight junction gene Claudin-1 is associated with atopic dermatitis among Ethiopians. J Eur Acad Dermatol Venereol. 2016;30(11):1939–41. https://doi.org/10.1111/jdv.13806.

    CAS  PubMed  Google Scholar 

  28. Mantel A, Carpenter-Mendini AB, Vanbuskirk JB, De Benedetto A, Beck LA, Pentland AP. Aldo-keto reductase 1C3 is expressed in differentiated human epidermis, affects keratinocyte differentiation, and is upregulated in atopic dermatitis. J Invest Dermatol. 2012;132(4):1103–10. https://doi.org/10.1038/jid.2011.412.

    Article  CAS  PubMed  Google Scholar 

  29. Esparza-Gordillo J, Weidinger S, Folster-Holst R, Bauerfeind A, Ruschendorf F, Patone G, et al. A common variant on chromosome 11q13 is associated with atopic dermatitis. Nat Genet. 2009;41(5):596–601. https://doi.org/10.1038/ng.347.

    Article  CAS  PubMed  Google Scholar 

  30. Esposito S, Patria MF, Spena S, Codecà C, Tagliabue C, Zampiero A, et al. Impact of genetic polymorphisms on paediatric atopic dermatitis. Int J Immunopathol Pharmacol. 2015;28(3):286–95. https://doi.org/10.1177/0394632015591997.

    Article  CAS  PubMed  Google Scholar 

  31. Sims JE, Smith DE. The IL-1 family: regulators of immunity. Nat rev Immunol. 2010;10(2):89–102. https://doi.org/10.1038/nri2691.

    Article  CAS  PubMed  Google Scholar 

  32. He R, Geha RS. Thymic stromal lymphopoietin. Ann N Y Acad Sci. 2010;1183:13–24. https://doi.org/10.1111/j.1749-6632.2009.05128.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yoshimoto T, Tsutsui H, Tominaga K, Hoshino K, Okamura H, Akira S, et al. IL-18, although antiallergic when administered with IL-12, stimulates IL-4 and histamine release by basophils. Proc Natl Acad Sci U S A. 1999;96(24):13962–6. Doi: Unknown

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bouchon A, Facchetti F, Weigand MA, Colonna M. TREM-1 amplifies inflammation and is a crucial mediator of septic shock. Nature. 2001;410(6832):1103–7. https://doi.org/10.1038/35074114.

    Article  CAS  PubMed  Google Scholar 

  35. Ohlenschlaeger T, Garred P, Madsen HO, Jacobsen S. Mannose-binding lectin variant alleles and the risk of arterial thrombosis in systemic lupus erythematosus. New Engl J med. 2004;351(3):260–7. https://doi.org/10.1056/NEJMoa033122.

    Article  CAS  PubMed  Google Scholar 

  36. Wang R, Zhu J, Dong X, Shi M, Lu C, Springer TA. GARP regulates the bioavailability and activation of TGFbeta. Mol Biol Cell. 2012;23(6):1129–39. https://doi.org/10.1091/mbc.E11-12-1018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Matrisian LM. Metalloproteinases and their inhibitors in matrix remodeling. Trends genet: TIG. 1990;6(4):121–5. Doi: unknown

    Article  CAS  PubMed  Google Scholar 

  38. • Paternoster L, Standl M, Baurecht H, Evans DM, Weidinger S. Multi-ethnic genome-wide association study of 21,000 cases and 95,000 controls identifies 11 novel risk loci for atopic dermatitis. J Invest Dermatol. 2015;135:S56. https://doi.org/10.1038/jid.2015.271. Meta-analysis of over 15 million genetic variants comprising 21,399 cases and 95,464 controls in atopic dermatitis patients from populations of European, African, Japanese, and Latino ancestries, followed by replication in 32,059 cases and 228,628 controls from 18 studies. Results identified 10 new risk loci that were robustly associated with the European population, although 6 reached genome-wide significance in all ancestry groups. All 10 newly identified loci are related to immune regulation, particularly innate immune signaling and T cell activation and specification.

    Article  Google Scholar 

  39. Maier E, Duschl A, Horejs-Hoeck J. STAT6-dependent and -independent mechanisms in Th2 polarization. Eur J Immunol. 2012;42(11):2827–33. https://doi.org/10.1002/eji.201242433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zheng Y, Danilenko DM, Valdez P, Kasman I, Eastham-Anderson J, Wu J, et al. Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature. 2007;445(7128):648–51. https://doi.org/10.1038/nature05505.

    Article  CAS  PubMed  Google Scholar 

  41. Sun H, Lu B, Li RQ, Flavell RA, Taneja R. Defective T cell activation and autoimmune disorder in Stra13-deficient mice. Nat Immunol. 2001;2(11):1040–7. https://doi.org/10.1038/ni721.

    Article  CAS  PubMed  Google Scholar 

  42. Borges L, Hsu ML, Fanger N, Kubin M, Cosman D. A family of human lymphoid and myeloid Ig-like receptors, some of which bind to MHC class I molecules. J Immunol. 1997;159(11):5192–6. Doi: unknown

    CAS  PubMed  Google Scholar 

  43. Huber R, Carrell RW. Implications of the three-dimensional structure of alpha 1-antitrypsin for structure and function of serpins. Biochemistry. 1989;28(23):8951–66. Doi: unknown

    Article  CAS  PubMed  Google Scholar 

  44. Ghosh M, Shen Z, Fahey JV, Cu-Uvin S, Mayer K, Wira CR. Trappin-2/Elafin: a novel innate anti-human immunodeficiency virus-1 molecule of the human female reproductive tract. Immunology. 2010;129(2):207–19. https://doi.org/10.1111/j.1365-2567.2009.03165.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. McCleverty CJ, Hornsby M, Spraggon G, Kreusch A. Crystal structure of human Pus10, a novel pseudouridine synthase. J Mol Biol. 2007;373(5):1243–54. https://doi.org/10.1016/j.jmb.2007.08.053.

    Article  CAS  PubMed  Google Scholar 

  46. Goutte C. Genetics leads the way to the accomplices of presenilins. Dev Cell. 2002;3(1):6–7. Doi: unknown.

    Article  CAS  PubMed  Google Scholar 

  47. Wu S, Trievel RC, Rice JC. Human SFMBT is a transcriptional repressor protein that selectively binds the N-terminal tail of histone H3. FEBS Lett. 2007;581(17):3289–96. https://doi.org/10.1016/j.febslet.2007.06.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Palmieri F. The mitochondrial transporter family (SLC25): physiological and pathological implications. Pflugers Archiv: Eur J Physiol. 2004;447(5):689–709. https://doi.org/10.1007/s00424-003-1099-7.

    Article  CAS  Google Scholar 

  49. Goutte C. Genetics leads the way to the accomplices of presenilins. Dev Cell. 2002;3(1):6–7. Doi: unknown.

    Article  CAS  PubMed  Google Scholar 

  50. Asad S, Winge MCG, Wahlgren CF, Bilcha KD, Nordenskjöld M, Taylan F, et al. The tight junction gene Claudin-1 is associated with atopic dermatitis among Ethiopians. J Eur Acad Dermatol Venereol. 2016;30(11):1939–41. https://doi.org/10.1111/jdv.13806.

    CAS  PubMed  Google Scholar 

  51. Babic Ž, Pipinic IS, Varnai VM, Kežic S, Macan J. Associations of TNFα -308G>A, TNFα -238G>A, IL-1α -889C>T and IL-10 -1082G>A genetic polymorphisms with atopic diseases: asthma, rhinitis and dermatitis. Int Arch Allergy Immunol. 2016;169(4):231–40. https://doi.org/10.1159/000445434.

    Article  CAS  PubMed  Google Scholar 

  52. Cheng F, Zhao JH, Tang XF, Cheng H, Sheng YJ, Jiang XY, et al. Association of the chromosome 11p13.5 variant and atopic dermatitis with a family history of atopy in the Chinese Han population. Asian Pac J Allergy Immunol. 2016;34(2):109–14. 10.12932/AP0596.34.2.2016.

    PubMed  Google Scholar 

  53. Ding Y, Shao X, Li X, Zhai Y, Zhang Y, Wang S, et al. Identification of candidate genes in atopic dermatitis based on bioinformatic methods. Int J Dermatol. 2016;55(7):791–800. https://doi.org/10.1111/ijd.13291.

    Article  CAS  PubMed  Google Scholar 

  54. Filipowska-Gronska A, Werynska-Kalemba M, Bozek A, Filipowska B, Zebracka-Gala J, Rusinek D, et al. The frequency of polymorphic variants of filaggrin gene and clinical atopic dermatitis. Postepy Dermatologii i Alergologii. 2016;33(1):37–41. https://doi.org/10.5114/pdia.2015.48036.

    PubMed  PubMed Central  Google Scholar 

  55. Gao J, Ma Y, Sheng Y, Zuo X, Wang W, Zheng X, et al. Association analysis of allergic sensitization susceptibility loci with atopic dermatitis in Chinese population. J Dermatol Sci. 2015;80(3):217–20. https://doi.org/10.1016/j.jdermsci.2015.09.009.

    Article  CAS  PubMed  Google Scholar 

  56. Gao L, Bin L, Rafaels NM, Huang L, Potee J, Ruczinski I, et al. Targeted deep sequencing identifies rare loss-of-function variants in IFNGR1 for risk of atopic dermatitis complicated by eczema herpeticum. J Allergy Clin Immunol. 2015;136(6):1591–600. https://doi.org/10.1016/j.jaci.2015.06.047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gharagozlou M, Behniafard N, Amirzargar AA, Hosseinverdi S, Sotoudeh S, Farhadi E, et al. Association between single nucleotide polymorphisms of the interleukin-4 gene and atopic dermatitis. Acta Dermatovenerol Croat. 2015;23(2):96–100. Doi: unknown

    PubMed  Google Scholar 

  58. • Ghosh D, Ding L, Sivaprasad U, Geh E, Myers JB, Bernstein JA, et al. Multiple transcriptome data analysis reveals biologically relevant atopic dermatitis signature genes and pathways. PLoS One. 2015;10(12) https://doi.org/10.1371/journal.pone.0144316. Gene expression from 5 different microarray studies comprising 127 samples, and over 250,000 transcripts were analyzed for differentially expressed genes in atopic dermatitis. In total, 89 differentially expressed genes were identified with roles spanning immune regulation, keratinocyte differentiation, and skin barrier function. Keratinocyte-related genes comprised the most enriched pathway in the datasets.

  59. Heo WI, Park KY, Jin T, Lee MK, Kim MJ, Choi EH, et al. Identification of novel candidate variants including COL6A6 polymorphisms in early-onset atopic dermatitis using whole-exome sequencing. BMC Med Genet. 2017;18(1) https://doi.org/10.1186/s12881-017-0368-9.

  60. Hussein YM, Alzahrani SS, Alharthi AA, Alhazmi AS, Ghonaim MM, Alghamdy AA, et al. Gene polymorphism of interleukin-4, interleukin-4 receptor and STAT6 in children with atopic dermatitis in Taif, Saudi Arabia. Immunol Invest. 2016;45(3):223–34. https://doi.org/10.3109/08820139.2015.1135943.

    Article  PubMed  Google Scholar 

  61. Kang Z, Li Q, Fu P, Yan S, Guan M, Xu J, et al. Correlation of KIF3A and OVOL1, but not ACTL9, with atopic dermatitis in Chinese pediatric patients. Gene. 2015;571(2):249–51. https://doi.org/10.1016/j.gene.2015.06.068.

    Article  CAS  PubMed  Google Scholar 

  62. Kilic S, Silan F, Hiz MM, Isik S, Ogretmen Z, Ozdemir O. Vitamin D receptor gene BSMI, FOKI, APAI, and TAQI polymorphisms and the risk of atopic dermatitis. J Investig Allergol Clin Immunol. 2016;26(2):106–10. 10.18176/jiaci.0020.

    Article  CAS  PubMed  Google Scholar 

  63. Kim KW, Myers RA, Lee JH, Igartua C, Lee KE, Kim YH, et al. Genome-wide association study of recalcitrant atopic dermatitis in Korean children. J Allergy Clin Immunol. 2015;136(3):678–84.e4. https://doi.org/10.1016/j.jaci.2015.03.030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kumar D, Puan KJ, Andiappan AK, Lee B, Westerlaken GHA, Haase D, et al. A functional SNP associated with atopic dermatitis controls cell type-specific methylation of the VSTM1 gene locus. Genome Med. 2017;9(1) https://doi.org/10.1186/s13073-017-0404-6.

  65. Lee YL, Yen JJ, Hsu LC, Kuo NW, Su MW, Yang MF, et al. Association of STAT6 genetic variants with childhood atopic dermatitis in Taiwanese population. J Dermatol Sci. 2015;79(3):222–8. https://doi.org/10.1016/j.jdermsci.2015.05.006.

    Article  CAS  PubMed  Google Scholar 

  66. López-Álvarez MR, Jiang W, Jones DC, Jayaraman J, Johnson C, Cookson WO, et al. LILRA6 copy number variation correlates with susceptibility to atopic dermatitis. Immunogenetics. 2016;68(9):743–7. https://doi.org/10.1007/s00251-016-0924-z.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Manz J, Rodríguez E, ElSharawy A, Oesau EM, Petersen BS, Baurecht H, et al. Targeted resequencing and functional testing identifies low-frequency missense variants in the gene encoding GARP as significant contributors to atopic dermatitis risk. J Invest Dermatol. 2016;136(12):2380–6. https://doi.org/10.1016/j.jid.2016.07.009.

    Article  CAS  PubMed  Google Scholar 

  68. Martel BC, Litman T, Hald A, Norsgaard H, Lovato P, Dyring-Andersen B, et al. Distinct molecular signatures of mild extrinsic and intrinsic atopic dermatitis. Exp Dermatol. 2016;25(6):453–9. https://doi.org/10.1111/exd.12967.

    Article  CAS  PubMed  Google Scholar 

  69. Miyake Y, Hitsumoto S, Tanaka K, Arakawa M. Association between TSLP polymorphisms and eczema in Japanese women: the Kyushu Okinawa Maternal and Child Health Study. Inflammation. 2015;38(4):1663–8. https://doi.org/10.1007/s10753-015-0143-z.

    Article  CAS  PubMed  Google Scholar 

  70. Narozna B, Hoffmann A, Sobkowiak P, Schoneich N, Breborowicz A, Szczepankiewicz A. Polymorphisms in the interleukin 4, interleukin 4 receptor and interleukin 13 genes and allergic phenotype: a case control study. Adv Med Sci. 2016;61(1):40–5. https://doi.org/10.1016/j.advms.2015.07.003.

    Article  PubMed  Google Scholar 

  71. On HR, Lee SE, Kim SE, Hong WJ, Kim HJ, Nomura T, et al. Filaggrin mutation in Korean patients with atopic dermatitis. Yonsei Med J. 2017;58(2):395–400. https://doi.org/10.3349/ymj.2017.58.2.395.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Quiggle AM, Goodwin ZA, Marfatia TR, Kumar MG, Ciliberto H, Bayliss SJ, et al. Low filaggrin monomer repeats in African American pediatric patients with moderate to severe atopic dermatitis. JAMA Dermatol. 2015;151(5):557–9. https://doi.org/10.1001/jamadermatol.2014.4916.

    Article  PubMed  PubMed Central  Google Scholar 

  73. • Schaarschmidt H, Ellinghaus D, Rodriguez E, Kretschmer A, Baurecht H, Lipinski S, et al. A genome-wide association study reveals 2 new susceptibility loci for atopic dermatitis. J Allergy Clin Immunol. 2015;136(3):802–6. https://doi.org/10.1016/j.jaci.2015.01.047. Genome-wide single nucleotide polymorphism (SNP) analysis was performed on over 1.6 million genetic markers in 870 cases and 5293 controls in atopic dermatitis patients of German origin. This was followed by replication in 1383 additional cases and 1728 controls. Results revealed five loci previously only identified in the Asian population in addition to two novel susceptibility loci with genome-wide significance at chromosome 2q24.3 (XIRP2) and 9p21.3 (DMRTA1). The functions of XIRP2 and DMRTA1 are currently unknown.

    Article  CAS  PubMed  Google Scholar 

  74. Sekiya A, Kono M, Tsujiuchi H, Kobayashi T, Nomura T, Kitakawa M, et al. Compound heterozygotes for filaggrin gene mutations do not always show severe atopic dermatitis. J Eur Acad Dermatol Venereol. 2017;31(1):158–62. https://doi.org/10.1111/jdv.13871.

    Article  CAS  PubMed  Google Scholar 

  75. Shang H, Cao XL, Wan YJ, Meng J, Guo LH. IL-4 gene polymorphism may contribute to an increased risk of atopic dermatitis in children. Dis Markers. 2016;2016:1021942. https://doi.org/10.1155/2016/1021942.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Suárez-Fariñas M, Ungar B, Correa da Rosa J, Ewald DA, Rozenblit M, Xu H, et al. RNA sequencing atopic dermatitis transcriptome profiling provides insights into novel disease mechanisms with potential therapeutic implications. J Allergy Clin Immunol. 2015; https://doi.org/10.1016/j.jaci.2015.03.003.

  77. Thomsen SF, Elmose C, Szecsi PB, Stender S, Kyvik KO, Backer V, et al. Filaggrin gene loss-of-function mutations explain discordance of atopic dermatitis within dizygotic twin pairs. Int J Dermatol. 2016;55(12):1341–4. https://doi.org/10.1111/ijd.13401.

    Article  CAS  PubMed  Google Scholar 

  78. Trzeciak M, Glen J, Rebala K, Bandurski T, Sikorska M, Nowicki R. Coexistence of 2282del4 FLG gene mutation and IL-18-137G/C gene polymorphism enhances the risk of atopic dermatitis. Postepy Dermatologii i Alergologii. 2016;33(1):57–62. https://doi.org/10.5114/pdia.2015.48050.

    PubMed  PubMed Central  Google Scholar 

  79. Trzeciak M, Sakowicz-Burkiewicz M, Wesserling M, Glen J, Dobaczewska D, Bandurski T, et al. Altered expression of genes encoding cornulin and repetin in atopic dermatitis. Int Arch Allergy Immunol. 2017;172(1):11–9. https://doi.org/10.1159/000453452.

    Article  CAS  PubMed  Google Scholar 

  80. Trzeciak M, Wesserling M, Bandurski T, Glen J, Nowicki R, Pawelczyk T. Association of a single nucleotide polymorphism in a late cornified envelope-like proline-rich 1 gene (LELP1) with atopic dermatitis. Acta Derm Venereol. 2016;96(4):459–63. https://doi.org/10.2340/00015555-2301.

    Article  CAS  PubMed  Google Scholar 

  81. Wang IJ, Wu LSH, Lockett GA, Karmaus WJJ. TSLP polymorphisms, allergen exposures, and the risk of atopic disorders in children. Annals of Allergy, Asthma Immunol. 2016;116(2):139–45e1. https://doi.org/10.1016/j.anai.2015.11.016.

    Article  CAS  Google Scholar 

  82. Wozniak M, Kaczmarek-Skamira E, Romanska-Gocka K, Czajkowski R, Kałuzna L, Zegarska B. The prevalence of mutations in the gene encoding filaggrin in the population of Polish patients with atopic dermatitis. Postepy Dermatologii i Alergologii. 2016;33(2):128–33. https://doi.org/10.5114/ada.2016.59156.

    PubMed  PubMed Central  Google Scholar 

  83. Zhong WL, Wu X, Yu B, Zhang J, Zhang W, Xu N, et al. Filaggrin gene mutation c.3321delA is associated with dry phenotypes of atopic dermatitis in the Chinese Han population. Chin Med J. 2016;129(12):1498–500. https://doi.org/10.4103/0366-6999.183424.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Paternoster L, Standl M, Chen CM, Ramasamy A, Bonnelykke K, Duijts L, et al. Meta-analysis of genome-wide association studies identifies three new risk loci for atopic dermatitis. Nat Genet. 2011;44(2):187–92. https://doi.org/10.1038/ng.1017.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Christophers E, Henseler T. Contrasting disease patterns in psoriasis and atopic dermatitis. Arch Dermatol Res. 1987;279(Suppl):S48–51. Doi: unknown

    Article  PubMed  Google Scholar 

  86. Zeeuwen PL, Cheng T, Schalkwijk J. The biology of cystatin M/E and its cognate target proteases. J invest dermatol. 2009;129(6):1327–38. Doi: unknown

    Article  CAS  PubMed  Google Scholar 

  87. Eyerich K, Novak N. Immunology of atopic eczema: overcoming the Th1/Th2 paradigm. Allergy. 2013;68(8):974–82. https://doi.org/10.1111/all.12184.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cory A. Dunnick.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Epidemiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yazd, N.K.K., Patel, R.R., Dellavalle, R.P. et al. Genetic Risk Factors for Development of Atopic Dermatitis: a Systematic Review. Curr Derm Rep 6, 297–308 (2017). https://doi.org/10.1007/s13671-017-0199-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13671-017-0199-0

Keywords

Navigation