Skip to main content

Advertisement

Log in

The Role of Yeast in Atopic Dermatitis Revisited: a Critical Appraisal

  • Atopic Dermatitis (C Flohr, Section Editor)
  • Published:
Current Dermatology Reports Aims and scope Submit manuscript

Abstract

Atopic dermatitis (AD) is the commonest chronic inflammatory skin disorder. In a subset of patients, particularly those with symptoms predominating on the head and neck, the yeast Malassezia is thought to be an important driver of AD of a more recalcitrant nature. Mechanistically, sensitization to Malassezia appears mediated by antigen-presenting cells in eczematous skin that promote cutaneous inflammation, partly through cross-reactivity with auto-antigens. This is consistent with evidence that patients with head and neck dermatitis (HND) have higher rates of sensitization to Malassezia versus healthy controls. However, to prove that Malassezia is a causative factor in HND, we should evaluate evidence on whether efforts to reduce Malassezia actually improve disease activity. We therefore performed a systematic review of randomized controlled trials (RCTs) investigating antifungal treatments in AD/HND. The majority of RCTs concluded that antifungals were superior to placebo or standard treatment in terms of reducing AD severity, supporting the notion that yeast can contribute to eczematous skin inflammation. Recognising and treating yeast colonization in AD patients can result in a significant reduction in disease severity, in addition to anti-inflammatory therapy alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AD:

Atopic dermatitis

ALT:

Alanine aminotransferase

APT:

Atopy patch test

C. albicans :

Candida albicans

EASI:

Eczema area and severity index

FLG:

Filaggrin

HND:

Head and neck dermatitis

IGA:

Investigator Global Assessment

ILC:

Innate lymphoid cell

sIgE:

Specific immunoglobulin E

M :

Malassezia

MHC:

Major histocompatibility complex

MnSOD:

Manganese superoxide dismutase

PGA:

Patient Global Assessment

RAST:

Radioallergosorbent test

RCT:

Randomized controlled trial

S. aureus :

Staphylococcus aureus

SCORAD:

Scoring atopic dermatitis

SPT:

Skin prick test

TEWL:

Transepidermal water loss

Treg:

Regulatory T cell

TSLP:

Thymic stromal lymphopoietin

U/ml:

International units per millilitre

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Flohr C, Mann J. New insights into the epidemiology of childhood atopic dermatitis. Allergy. 2014;69(1):3–16. This study of 619 3-month old infants reported that those with AD were significantly more likely than healthy controls to be food-sensitized. This association was independent of FLG loss-of-function mutation inheritance and TEWL.

    Article  CAS  PubMed  Google Scholar 

  2. Darabi K et al. The role of Malassezia in atopic dermatitis affecting the head and neck of adults. J Am Acad Dermatol. 2009;60(1):125–36.

    Article  PubMed  Google Scholar 

  3. Schmid-Grendelmeier P et al. IgE-mediated and T cell-mediated autoimmunity against manganese superoxide dismutase in atopic dermatitis. J Allergy Clin Immunol. 2005;115(5):1068–75.

    Article  CAS  PubMed  Google Scholar 

  4. Clemmensen OJ, Hjorth N. Treatment of dermatitis of the head and neck with ketoconazole in patients with Type I sensitivity to Pityrosporum orbiculare. Semin Dermatol. 1983;2:26–9.

    Google Scholar 

  5. Waersted A, Hjorth N. Pityrosporum orbiculare--a pathogenic factor in atopic dermatitis of the face, scalp and neck? Acta Derm Venereol Suppl. 1985;114:146–8.

    CAS  Google Scholar 

  6. Shaker M. New insights into the allergic march. Curr Opin Pediatr. 2014;26(4):516–20. This review outlines recent insights into the nature of atopic conditions and their associations.

    Article  PubMed  Google Scholar 

  7. Faergemann J, Aly R, Maibach HI. Quantitative variations in distribution of Pityrosporum orbiculare on clinically normal skin. Acta Derm Venereol. 1983;63(4):346–8.

    CAS  PubMed  Google Scholar 

  8. Faergemann J, Fredriksson T. Age incidence of Pityrosporum orbiculare on human skin. Acta Derm Venereol. 1980;60(6):531–3.

    CAS  PubMed  Google Scholar 

  9. Gupta AK et al. Quantitative culture of Malassezia species from different body sites of individuals with or without dermatoses. Med Mycol. 2001;39(3):243–51.

    Article  CAS  PubMed  Google Scholar 

  10. Roberts SO. Pityrosporum orbiculare: incidence and distribution on clinically normal skin. Br J Dermatol. 1969;81(4):264–9.

    Article  CAS  PubMed  Google Scholar 

  11. Aspres N, Anderson C. Malassezia yeasts in the pathogenesis of atopic dermatitis. Australas J Dermatol. 2004;45(4):199–205. quiz 206-7.

    Article  PubMed  Google Scholar 

  12. Gueho E, Midgley G, Guillot J. The genus Malassezia with description of four new species. Antonie Van Leeuwenhoek. 1996;69(4):337–55.

    Article  CAS  PubMed  Google Scholar 

  13. Gaitanis G et al. The Malassezia genus in skin and systemic diseases. Clin Microbiol Rev. 2012;25(1):106–41. This is a detailed review encompassing taxonomy and identification methods for Malassezia, Malassezia epidemiology and nosology in humans, the pathogenic subtypes of Malassezia, therapeutic approaches for Malassezia-associated skin disease, and Malassezia systemic infections.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Gaitanis G et al. Skin diseases associated with Malassezia yeasts: facts and controversies. Clin Dermatol. 2013;31(4):455–63. This is a concise review highlighting controversies in Malassezia taxonomy, physiology and biochemistry in relation to skin diseases caused or exacerbated by this yeast.

    Article  PubMed  Google Scholar 

  15. Baroni A et al. Malassezia furfur invasiveness in a keratinocyte cell line (HaCat): effects on cytoskeleton and on adhesion molecule and cytokine expression. Arch Dermatol Res. 2001;293(8):414–9.

    Article  CAS  PubMed  Google Scholar 

  16. Flohr C et al. Atopic dermatitis and disease severity are the main risk factors for food sensitization in exclusively breastfed infants. J Invest Dermatol. 2014;134(2):345–50. This review summarises current understanding of the epidemiology of AD, including a systematic review of the effect of postnatal antibiotic exposure on AD risk.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Brough HA. Atopic dermatitis increases the effect of exposure to peanut antigen in dust on peanut sensitization and likely peanut allergy. J Allergy Clin Immunol. 2015;135(1):164–70. This study in 512 infants investigated whether AD and disease severity modified the strength of the association between environmental peanut protein exposure and the risk of peanut sensitization. Thus it illustrates another scenario in which environmental exposure to antigen can lead to transcutaneous sensitization via eczematous skin.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Boussault P et al. Oat sensitization in children with atopic dermatitis: prevalence, risks and associated factors. Allergy. 2007;62(11):1251–6.

    Article  CAS  PubMed  Google Scholar 

  19. Fallon PG et al. A homozygous frameshift mutation in the mouse Flg gene facilitates enhanced percutaneous allergen priming. Nat Genet. 2009;41(5):602–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Glatz M et al. Malassezia spp.-specific Immunoglobulin E Level is a Marker for Severity of Atopic Dermatitis in Adults. Acta Derm Venereol. 2015;95(2):191–6. This study investigated Malassezia sensitization rates and correlated this with AD severity in 132 adults and 67 children with AD.

    Article  PubMed  Google Scholar 

  21. Moretta A. The dialogue between human natural killer cells and dendritic cells. Curr Opin Immunol. 2005;17(3):306–11.

    Article  CAS  PubMed  Google Scholar 

  22. Liu YJ. Thymic stromal lymphopoietin: master switch for allergic inflammation. J Exp Med. 2006;203(2):269–73.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Snelgrove RJ et al. Alternaria-derived serine protease activity drives IL-33-mediated asthma exacerbations. J Allergy Clin Immunol. 2014;134(3):583–592 e6. In this study, an asthma mouse model was developed by sensitizing mice to house dust mite, then challenging the mice with Alternaria. Alternaria-specific serine protease activity was found to induce rapid IL-33 release, triggering robust Th2 inflammation and exacerbating allergic airway disease.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Ong PY. New insights in the pathogenesis of atopic dermatitis. Pediatr Res. 2014;75(1-2):171–5. This review explores the role of innate immunity in the pathogenesis of AD, and how this influences prognosis and therapeutic targets.

    Article  CAS  PubMed  Google Scholar 

  25. Ardern-Jones MR et al. Bacterial superantigen facilitates epithelial presentation of allergen to T helper 2 cells. Proc Natl Acad Sci U S A. 2007;104(13):5557–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Ou LS et al. T regulatory cells in atopic dermatitis and subversion of their activity by superantigens. J Allergy Clin Immunol. 2004;113(4):756–63.

    Article  CAS  PubMed  Google Scholar 

  27. Parronchi P et al. Allergen- and bacterial antigen-specific T-cell clones established from atopic donors show a different profile of cytokine production. Proc Natl Acad Sci U S A. 1991;88(10):4538–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Wierenga EA et al. Evidence for compartmentalization of functional subsets of CD2+ T lymphocytes in atopic patients. J Immunol. 1990;144(12):4651–6.

    CAS  PubMed  Google Scholar 

  29. Del Prete GF et al. Allergen exposure induces the activation of allergen-specific Th2 cells in the airway mucosa of patients with allergic respiratory disorders. Eur J Immunol. 1993;23(7):1445–9.

    Article  PubMed  Google Scholar 

  30. Hamid Q et al. Expression of mRNA for interleukin-5 in mucosal bronchial biopsies from asthma. J Clin Invest. 1991;87(5):1541–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. van der Heijden FL et al. High frequency of IL-4-producing CD4+ allergen-specific T lymphocytes in atopic dermatitis lesional skin. J Invest Dermatol. 1991;97(3):389–94.

    Article  PubMed  Google Scholar 

  32. Jutel M et al. Bee venom immunotherapy results in decrease of IL-4 and IL-5 and increase of IFN-gamma secretion in specific allergen-stimulated T cell cultures. J Immunol. 1995;154(8):4187–94.

    CAS  PubMed  Google Scholar 

  33. Secrist H et al. Allergen immunotherapy decreases interleukin 4 production in CD4+ T cells from allergic individuals. J Exp Med. 1993;178(6):2123–30.

    Article  CAS  PubMed  Google Scholar 

  34. Varney VA et al. Influence of grass pollen immunotherapy on cellular infiltration and cytokine mRNA expression during allergen-induced late-phase cutaneous responses. J Clin Invest. 1993;92(2):644–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Agosti JM et al. Transfer of allergen-specific IgE-mediated hypersensitivity with allogeneic bone marrow transplantation. N Engl J Med. 1988;319(25):1623–8.

    Article  CAS  PubMed  Google Scholar 

  36. Koharazawa H et al. Resolution of atopic dermatitis following allogeneic bone marrow transplantation for chronic myelogenous leukemia. Bone Marrow Transplant. 2005;35(12):1223–4.

    Article  CAS  PubMed  Google Scholar 

  37. Saurat JH. Eczema in primary immune-deficiencies. Clues to the pathogenesis of atopic dermatitis with special reference to the Wiskott-Aldrich syndrome. Acta Derm Venereol Suppl. 1985;114:125–8.

    CAS  Google Scholar 

  38. Faergemann J. Atopic dermatitis and fungi. Clin Microbiol Rev. 2002;15(4):545–63.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Nakabayashi A, Sei Y, Guillot J. Identification of Malassezia species isolated from patients with seborrhoeic dermatitis, atopic dermatitis, pityriasis versicolor and normal subjects. Med Mycol. 2000;38(5):337–41.

    Article  CAS  PubMed  Google Scholar 

  40. Sandstrom Falk MH et al. The prevalence of Malassezia yeasts in patients with atopic dermatitis, seborrhoeic dermatitis and healthy controls. Acta Derm Venereol. 2005;85(1):17–23.

    Article  PubMed  Google Scholar 

  41. Sugita T et al. Sequence diversity of the intergenic spacer region of the rRNA gene of Malassezia globosa colonizing the skin of patients with atopic dermatitis and healthy individuals. J Clin Microbiol. 2003;41(7):3022–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Sugita T et al. Molecular analysis of Malassezia microflora on the skin of atopic dermatitis patients and healthy subjects. J Clin Microbiol. 2001;39(10):3486–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Sugita T et al. Genotype analysis of Malassezia restricta as the major cutaneous flora in patients with atopic dermatitis and healthy subjects. Microbiol Immunol. 2004;48(10):755–9.

    Article  CAS  PubMed  Google Scholar 

  44. Sugita T et al. Quantitative analysis of cutaneous malassezia in atopic dermatitis patients using real-time PCR. Microbiol Immunol. 2006;50(7):549–52.

    Article  CAS  PubMed  Google Scholar 

  45. Kaga M et al. Molecular analysis of the cutaneous Malassezia microbiota from the skin of patients with atopic dermatitis of different severities. Mycoses. 2011;54(4):e24–8.

    Article  CAS  PubMed  Google Scholar 

  46. Yim SM et al. Molecular analysis of malassezia microflora on the skin of the patients with atopic dermatitis. Ann Dermatol. 2010;22(1):41–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Zhang E et al. Characterization of the skin fungal microbiota in patients with atopic dermatitis and in healthy subjects. Microbiol Immunol. 2011;55(9):625–32.

    Article  CAS  PubMed  Google Scholar 

  48. Akaza N et al. Cutaneous Malassezia microbiota in atopic dermatitis patients differ by gender and body part. Dermatology. 2010;221(3):253–60.

    Article  PubMed  Google Scholar 

  49. Zinkeviciene A et al. Cutaneous yeast microflora in patients with atopic dermatitis. Cent Eur J Med. 2011;6(6):713–9.

    Google Scholar 

  50. Casagrande BF et al. Sensitization to the yeast Malassezia sympodialis is specific for extrinsic and intrinsic atopic eczema.[Erratum appears in J Invest Dermatol. 2006 Nov;126(11):2551]. J Investig Dermatol. 2006;126(11):2414–21.

    Article  PubMed  Google Scholar 

  51. Johansson C et al. Atopy patch test reactions to Malassezia allergens differentiate subgroups of atopic dermatitis patients. Br J Dermatol. 2003;148(3):479–88.

    Article  CAS  PubMed  Google Scholar 

  52. Kato H et al. Detection and quantification of specific IgE antibodies against eight Malassezia species in sera of patients with atopic dermatitis by using an enzyme-linked immunosorbent assay. Microbiol Immunol. 2006;50(11):851–6.

    Article  CAS  PubMed  Google Scholar 

  53. Nordvall SL et al. IgE antibodies to Pityrosporum orbiculare and Staphylococcus aureus in patients with very high serum total IgE. Clin Exp Allergy. 1992;22(8):756–61.

    Article  CAS  PubMed  Google Scholar 

  54. Rokugo M et al. Contact sensitivity to Pityrosporum ovale in patients with atopic dermatitis. Arch Dermatol. 1990;126(5):627–32.

    Article  CAS  PubMed  Google Scholar 

  55. Scalabrin DM et al. Use of specific IgE in assessing the relevance of fungal and dust mite allergens to atopic dermatitis: a comparison with asthmatic and nonasthmatic control subjects. J Allergy Clin Immunol. 1999;104(6):1273–9.

    Article  CAS  PubMed  Google Scholar 

  56. Schmid-Grendelmeier P, Scheynius A, Crameri R. The role of sensitization to Malassezia sympodialis in atopic eczema. Chem Immunol Allergy. 2006;91:98–109.

    Article  CAS  PubMed  Google Scholar 

  57. Zargari A et al. Serum IgE reactivity to Malassezia furfur extract and recombinant M. furfur allergens in patients with atopic dermatitis. Acta Derm Venereol. 2001;81(6):418–22.

    Article  CAS  PubMed  Google Scholar 

  58. Bayrou O et al. Head and neck atopic dermatitis and malassezia-furfur-specific IgE antibodies. Dermatology. 2005;211(2):107–13.

    Article  CAS  PubMed  Google Scholar 

  59. Devos SA, van der Valk PG. The relevance of skin prick tests for Pityrosporum ovale in patients with head and neck dermatitis. Allergy. 2000;55(11):1056–8.

    Article  CAS  PubMed  Google Scholar 

  60. Kieffer M et al. Immune reactions to Pityrosporum ovale in adult patients with atopic and seborrheic dermatitis. J Am Acad Dermatol. 1990;22(5 Pt 1):739–42.

    Article  CAS  PubMed  Google Scholar 

  61. Kim TY et al. Head and neck dermatitis: the role of Malassezia furfur, topical steroid use and environmental factors in its causation. Clin Exp Dermatol. 1999;24(3):226–31.

    Article  CAS  PubMed  Google Scholar 

  62. Mayser P et al. Growth requirements and nitrogen metabolism of Malassezia furfur. Arch Dermatol Res. 1998;290(5):277–82.

    Article  CAS  PubMed  Google Scholar 

  63. Brodska P et al. IgE-mediated sensitization to malassezia in atopic dermatitis: more common in male patients and in head and neck type. Dermatitis. 2014;25(3):120–6. This study investigated Malassezia sensitization rates and correlated this with AD severity in 173 AD patients.

    Article  CAS  PubMed  Google Scholar 

  64. Zhang E, et al. Anti-Malassezia-Specific IgE Antibodies Production in Japanese Patients with Head and Neck Atopic Dermatitis: Relationship between the Level of Specific IgE Antibody and the Colonization Frequency of Cutaneous Malassezia Species and Clinical Severity. J Allergy. 2011;2011: p. 645670.

  65. Kekki OM et al. Sensitization to Malassezia in children with atopic dermatitis combined with food allergy. Pediatr Allergy Immunol. 2013;24(3):244–9. This study investigated the prevalence of Malassezia sensitization in 187 infants diagnosed with both AD and food allergy in the first year of life.

    Article  PubMed  Google Scholar 

  66. Jinnestal CL et al. Skin barrier impairment correlates with cutaneous Staphylococcus aureus colonization and sensitization to skin-associated microbial antigens in adult patients with atopic dermatitis. Int J Dermatol. 2014;53(1):27–33. This study in 30 AD patients and 10 controls investigated the relationship between skin barrier function Staph. aureus colonization and Malassezia sensitization.

    Article  CAS  PubMed  Google Scholar 

  67. Tengvall Linder M et al. Positive atopy patch test reactions to Pityrosporum orbiculare in atopic dermatitis patients. Clin Exp Allergy. 2000;30(1):122–31.

    Article  CAS  PubMed  Google Scholar 

  68. Zeller S et al. Immunoglobulin-E-mediated reactivity to self antigens: a controversial issue. Int Arch Allergy Immunol. 2008;145(2):87–93.

    Article  CAS  PubMed  Google Scholar 

  69. Balaji H et al. Malassezia sympodialis thioredoxin-specific T cells are highly cross-reactive to human thioredoxin in atopic dermatitis. J Allergy Clin Immunol. 2011;128(1):92–99.e4.

    Article  CAS  PubMed  Google Scholar 

  70. Vilhelmsson M et al. Mutational analysis of amino acid residues involved in IgE-binding to the Malassezia sympodialis allergen Mala s 11. Mol Immunol. 2008;46(2):294–303.

    Article  CAS  PubMed  Google Scholar 

  71. Higgins JPT, Green S, and editors, Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]. The Cochrane Collaboration, 2011. http://www.cochrane-handbook.org.

  72. Hanifin JM, Rajka G. Diagnostic features of atopic dermatitis. Acta Derm Venereol Suppl. 1980;92:44–7.

    Google Scholar 

  73. Williams HC et al. Validation of the U.K. diagnostic criteria for atopic dermatitis in a population setting. U.K. Diagnostic Criteria for Atopic Dermatitis Working Party. Br J Dermatol. 1996;135(1):12–7.

    Article  CAS  PubMed  Google Scholar 

  74. Saki N, Jowkar F, Alyaseen S. Comparison of sertaconazole 2% cream versus hydrocortisone 1% ointment in the treatment of atopic dermatitis. J Dermatolog Treat. 2013;24(6):447–9. This double-blind comparison study in 45 AD patients compared a 4-week course of sertaconazole 2% cream applied to one body side, with hydrocortisone 1% cream applied to the other.

    Article  CAS  PubMed  Google Scholar 

  75. Wong AW, Hon EK, Zee B. Is topical antimycotic treatment useful as adjuvant therapy for flexural atopic dermatitis: randomized, double-blind, controlled trial using one side of the elbow or knee as a control. Int J Dermatol. 2008;47(2):187–91.

    Article  PubMed  Google Scholar 

  76. Broberg A, Faergemann Topical J. antimycotic treatment of atopic dermatitis in the head/neck area. A double-blind randomised study. Acta Derm Venereol. 1995;75:46–9.

    CAS  PubMed  Google Scholar 

  77. Mayser P et al. Treatment of head and neck dermatitis with ciclopiroxolamine cream--results of a double-blind, placebo-controlled study. Skin Pharmacol Physiol. 2006;19(3):153–8.

    Article  CAS  PubMed  Google Scholar 

  78. Back O, Bartosik J. Systemic ketoconazole for yeast allergic patients with atopic dermatitis. J Eur Acad Dermatol Venereol. 2001;15(1):34–8.

    Article  CAS  PubMed  Google Scholar 

  79. Svejgaard E et al. Treatment of head and neck dermatitis comparing itraconazole 200 mg and 400 mg daily for 1 week with placebo. J Eur Acad Dermatol Venereol. 2004;18(4):445–9.

    Article  CAS  PubMed  Google Scholar 

  80. Lintu P et al. Systemic ketoconazole is an effective treatment of atopic dermatitis with IgE-mediated hypersensitivity to yeasts. Allergy. 2001;56:512–7.

    Article  CAS  PubMed  Google Scholar 

  81. Ikezawa Z et al. Clinical usefulness of oral itraconazole, an antimycotic drug, for refractory atopic dermatitis. Eur J Dermatol. 2004;14:400–6.

    CAS  PubMed  Google Scholar 

  82. Novak N, Simon D. Atopic dermatitis - from new pathophysiologic insights to individualized therapy. Allergy. 2011;66(7):830–9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr Susan Howell, mycologist at Guy’s and St Thomas’ NHS Foundation Trust, as well as Library Information Specialists Sarah Lawson (University College London) and John Woodcock (King’s College London) for their support in developing the systematic search strategy.

Compliance with Ethics Guidelines

Conflict of Interest

Teresa Tsakok, Heike Schulenburg, Catherine Smith, Stephen Till and Carsten Flohr declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Flohr.

Additional information

This article is part of the Topical Collection on Atopic Dermatitis

Appendix: Search Strategies

Appendix: Search Strategies

  1. I.

    CENTRAL (Cochrane library) search strategy

    1. #1

      MeSH descriptor: [Fungi] explode all trees

    2. #2

      (fungi)

    3. #3

      (#1 or #2)

    4. #4

      (yeasts) or (‘not dermatophyte’) or (‘no dermatophyte’) or (‘non dermatophyte’)

    5. #5

      (malassezia) or (pityrosporum)

    6. #6

      (candida)

    7. #7

      (#3 or #4 or #5 or #6)

    8. #8

      MeSH descriptor: [Dermatitis, Atopic] explode all trees

    9. #9

      MeSH descriptor: [Eczema] explode all trees

    10. #10

      ('atopic dermatitis') or ('atopic eczema') or eczema

    11. #11

      (#8 or #9 or #10)

    12. #12

      (#7 and #11)

  2. II.

    Systematic MEDLINE (OVID) and EMBASE search strategy

    1. 1.

      fungi.mp. or exp Fungi/

    2. 2.

      fungus.mp.

    3. 3.

      fungal.mp.

    4. 4.

      yeast.mp. or exp Yeasts/

    5. 5.

      Malassezia.mp.

    6. 6.

      pityrosporum.mp.

    7. 7.

      candida.mp.

    8. 8.

      or/1-7

    9. 9.

      atopic dermatitis.mp. or exp Dermatitis, Atopic/

    10. 10.

      atopic eczema.mp.

    11. 11.

      eczema.mp.

    12. 12.

      neurodermatitis.mp.

    13. 13.

      or/9-12

    14. 14.

      8 and 13

/ after an index term indicates that all subheadings were selected. exp before an index term indicates that the term was exploded. mp. indicates a free text search for a term (title, abstract, original title, subject heading word, keyword heading word; cas registry/ec number word, mesh subject heading, chemical abstracts (cas) registry/enzyme commission number (ec number) word, MESH subject heading).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsakok, T., Schulenburg, H., Smith, C. et al. The Role of Yeast in Atopic Dermatitis Revisited: a Critical Appraisal. Curr Derm Rep 4, 228–240 (2015). https://doi.org/10.1007/s13671-015-0123-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13671-015-0123-4

Keywords

Navigation