Skip to main content

Advertisement

Log in

An Intergenerational Approach to Break the Cycle of Malnutrition

  • Maternal and Childhood Nutrition (AC Wood, Section Editor)
  • Published:
Current Nutrition Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This article examines how nutritional status is treated throughout the lifecycle. In doing so, the review identifies promising life stages during which intervention may improve nutritional status of future generations.

Recent Findings

A life course perspective suggests that nutritional changes are most likely to be sustained when they occur during times of developmental transition, such as pregnancy or adolescence. Adolescence is a unique period in which malnutrition in future generations may be addressed because it is the first life stage at which pregnancy becomes feasible and individuals seek independence from parents.

Summary

A need exists to begin investigating not just how nutrition changes are sustained throughout the lifespan, but how nutritional intervention in one generation impacts the next. This intergenerational approach should be undertaken with cross-discipline collaboration to have the best chance at impacting underlying determinants of malnutrition like poverty and women’s education.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. United Nations International Children’s Emergency Fund (UNICEF). Malnutrition. In: UNICEF data: monitoring the situation of children and women. 2018. https://data.unicef.org/topic/nutrition/malnutrition/. Accessed 7 Aug 2018.

  2. Becker PJ, Nieman Carney L, Corkins MR, Monczka J, Smith E, Smith SE, et al. Consensus statement of the Academy of Nutrition and Dietetics/American Society for Parenteral and Enteral Nutrition: indicators recommended for the identification and documentation of pediatric malnutrition (undernutrition). J Acad Nutr Diet. 2014;114(12):1988–2000. https://doi.org/10.1016/j.jand.2014.08.026.

    Article  PubMed  Google Scholar 

  3. Tette EM, Sifah EK, Nartey ET. Factors affecting malnutrition in children and the uptake of interventions to prevent the condition. BMC Pediatr. 2015;15:189. https://doi.org/10.1186/s12887-015-0496-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rodriguez L, Cervantes E, Ortiz R. Malnutrition and gastrointestinal and respiratory infections in children: a public health problem. Int J Environ Res Public Health. 2011;8(4):1174–205. https://doi.org/10.3390/ijerph8041174.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Fatima S, Ali Khan S, Fatima F. Nutritional supplements and their use in the treatment of malnutrition in developing countries. J Ayub Med Coll Abbottabad. 2015;27(4):911–22.

    PubMed  Google Scholar 

  6. Black RE, Victora CG, Walker SP, Bhutta ZA, Christian P, de Onis M, et al. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet. 2013;382(9890):427–51. https://doi.org/10.1016/s0140-6736(13)60937-x.

    Article  PubMed  Google Scholar 

  7. International Food Policy Research Institute. Global Nutrition Report 2016: From promise to impact: ending malnutrition by 2030. Washington, D.C.: 2016.

  8. Bhutta ZA, Das JK, Rizvi A, Gaffey MF, Walker N, Horton S, et al. Evidence-based interventions for improvement of maternal and child nutrition: what can be done and at what cost? Lancet. 2013;382(9890):452–77. https://doi.org/10.1016/s0140-6736(13)60996-4.

    Article  PubMed  Google Scholar 

  9. • Abdullah A. The double burden of undernutrition and overnutrition in developing countries: an update. Curr Obes Rep. 2015;4(3):337–49. https://doi.org/10.1007/s13679-015-0170-y A health disparity continues to persist based on income level. Nutritional interventions are challenged by having to accommodate for both over- and undernutrition.

    Article  PubMed  Google Scholar 

  10. Min J, Zhao Y, Slivka L, Wang Y. Double burden of diseases worldwide: coexistence of undernutrition and overnutrition-related non-communicable chronic diseases. Obes Rev. 2018;19(1):49–61. https://doi.org/10.1111/obr.12605.

    Article  PubMed  Google Scholar 

  11. Tzioumis E, Adair LS. Childhood dual burden of under- and overnutrition in low- and middle-income countries: a critical review. Food Nutr Bull. 2014;35(2):230–43. https://doi.org/10.1177/156482651403500210.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Barker DJ. The origins of the developmental origins theory. J Intern Med. 2007;261(5):412–7. https://doi.org/10.1111/j.1365-2796.2007.01809.x.

    Article  CAS  PubMed  Google Scholar 

  13. Wallack L, Thornburg K. Developmental origins, epigenetics, and equity: moving upstream. Matern Child Health J. 2016;20(5):935–40. https://doi.org/10.1007/s10995-016-1970-8.

    Article  PubMed  Google Scholar 

  14. Aizer A, Currie J. The intergenerational transmission of inequality: maternal disadvantage and health at birth. Science. 2014;344(6186):856–61. https://doi.org/10.1126/science.1251872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hoffman DJ. Early nutrition and adult health: perspectives for international and community nutrition programs and policies. Nutr Res Pract. 2010;4(6):449–54. https://doi.org/10.4162/nrp.2010.4.6.449.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Martorell R, Zongrone A. Intergenerational influences on child growth and undernutrition. Paediatr Perinat Epidemiol. 2012;26(Suppl 1):302–14. https://doi.org/10.1111/j.1365-3016.2012.01298.x.

    Article  PubMed  Google Scholar 

  17. Drake AJ, Liu L. Intergenerational transmission of programmed effects: public health consequences. Trends Endocrinol Metab. 2010;21(4):206–13. https://doi.org/10.1016/j.tem.2009.11.006.

    Article  CAS  PubMed  Google Scholar 

  18. Bowen M. Family therapy in clinical practice. Lanham: Jason Aronson; 1985.

    Google Scholar 

  19. De-Regil LM, Harding KB, Roche ML. Preconceptional nutrition interventions for adolescent girls and adult women: global guidelines and gaps in evidence and policy with emphasis on micronutrients. J Nutr. 2016;146(7):1461s–70s. https://doi.org/10.3945/jn.115.223487.

    Article  CAS  PubMed  Google Scholar 

  20. Freizinger M, Franko DL, Dacey M, Okun B, Domar AD. The prevalence of eating disorders in infertile women. Fertil Steril. 2010;93(1):72–8. https://doi.org/10.1016/j.fertnstert.2008.09.055.

    Article  PubMed  Google Scholar 

  21. Dag ZO, Dilbaz B. Impact of obesity on infertility in women. J Turk Ger Gynecol Assoc. 2015;16(2):111–7. https://doi.org/10.5152/jtgga.2015.15232.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rooney KL, Domar AD. The impact of lifestyle behaviors on infertility treatment outcome. Curr Opin Obstet Gynecol. 2014;26(3):181–5. https://doi.org/10.1097/gco.0000000000000069.

    Article  PubMed  Google Scholar 

  23. McLean M, Wellons MF. Optimizing natural fertility: the role of lifestyle modification. Obstet Gynecol Clin N Am. 2012;39(4):465–77. https://doi.org/10.1016/j.ogc.2012.09.004.

    Article  Google Scholar 

  24. Bailey MJ. Fifty years of family planning: new evidence on the long-run effects of increasing access to contraception. Brookings Pap Econ Act. 2013;2013:341–409. https://doi.org/10.1353/eca.2013.0001.

    Article  PubMed  PubMed Central  Google Scholar 

  25. • Gaskins AJ, Chavarro JE. Diet and fertility: a review. Am J Obstet Gynecol. 2018:379–89. https://doi.org/10.1016/j.ajog.2017.08.010. Current research does not support some popular hypotheses regarding specific dietary components and its effects on fertility. Links between folic acid, omega 3, and an adherence to a general healthy diet in relation to improved birth outcomes, fertility status, and conception factors are outlined in this review. A critical gap exists in distinguishing male and female dietary impacts on fertility.

    Article  PubMed  Google Scholar 

  26. Grieger JA, Grzeskowiak LE, Clifton VL. Preconception dietary patterns in human pregnancies are associated with preterm delivery. J Nutr. 2014;144(7):1075–80. https://doi.org/10.3945/jn.114.190686.

    Article  CAS  PubMed  Google Scholar 

  27. Bibbins-Domingo K, Grossman DC, Curry SJ, Davidson KW, Epling JW Jr, Garcia FA, et al. Folic acid supplementation for the prevention of neural tube defects: US Preventive Services Task Force recommendation statement. JAMA. 2017;317(2):183–9. https://doi.org/10.1001/jama.2016.19438.

    Article  PubMed  Google Scholar 

  28. • Salas-Huetos A, Bullo M, Salas-Salvado J. Dietary patterns, foods and nutrients in male fertility parameters and fecundability: a systematic review of observational studies. Hum Reprod Update. 2017;23(4):371–89. https://doi.org/10.1093/humupd/dmx006 Male factors in fertility are less commonly explored despite its contribution to the global health issue of infertility. Adhering to a healthy diet was correlated with benefits in semen quality and fecundability rates. The reviewed literature indicates a need to further explore dietary intakes of males in relation to successful conception.

    Article  PubMed  Google Scholar 

  29. Giahi L, Mohammadmoradi S, Javidan A, Sadeghi MR. Nutritional modifications in male infertility: a systematic review covering 2 decades. Nutr Rev. 2016;74(2):118–30. https://doi.org/10.1093/nutrit/nuv059.

    Article  PubMed  Google Scholar 

  30. Toivonen KI, Oinonen KA, Duchene KM. Preconception health behaviours: a scoping review. Prev Med. 2017;96:1–15. https://doi.org/10.1016/j.ypmed.2016.11.022.

    Article  PubMed  Google Scholar 

  31. Homan G, Litt J, Norman RJ. The FAST study: fertility ASsessment and advice targeting lifestyle choices and behaviours: a pilot study. Hum Reprod. 2012;27(8):2396–404. https://doi.org/10.1093/humrep/des176.

    Article  CAS  PubMed  Google Scholar 

  32. Green-Raleigh K, Lawrence JM, Chen H, Devine O, Prue C. Pregnancy planning status and health behaviors among nonpregnant women in a California managed health care organization. Perspect Sex Reprod Health. 2005;37(4):179–83. https://doi.org/10.1363/psrh.37.179.05.

    Article  PubMed  Google Scholar 

  33. Gresham E, Bisquera A, Byles JE, Hure AJ. Effects of dietary interventions on pregnancy outcomes: a systematic review and meta-analysis. Matern Child Nutr. 2016;12(1):5–23. https://doi.org/10.1111/mcn.12142.

    Article  PubMed  Google Scholar 

  34. • Stang J, Huffman LG. Position of the Academy of Nutrition and Dietetics: obesity, reproduction, and pregnancy outcomes. J Acad Nutr Diet. 2016;116(4):677–91. https://doi.org/10.1016/j.jand.2016.01.008 Nutritional intervention is needed during both preconception and pregnancy to support healthy fetal growth and development. Recommended modifications to lifestyle vary based on mother’s pre-pregnancy weight. More research is needed regarding the association between maternal weight gain and birth outcomes.

    Article  PubMed  Google Scholar 

  35. Kominiarek MA, Rajan P. Nutrition recommendations in pregnancy and lactation. Med Clin North Am. 2016;100(6):1199–215. https://doi.org/10.1016/j.mcna.2016.06.004.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Institute of Medicine, National Research Council Committee to Reexamine IOM Pregnancy Weight Guidelines. Weight gain during pregnancy: reexamining the guidelines. Washington (DC): National Academies Press (US); 2009.

    Google Scholar 

  37. Margerison Zilko CE, Rehkopf D, Abrams B. Association of maternal gestational weight gain with short- and long-term maternal and child health outcomes. Am J Obstet Gynecol. 2010;202(6):574.e1–8. https://doi.org/10.1016/j.ajog.2009.12.007.

    Article  Google Scholar 

  38. Kapadia MZ, Park CK, Beyene J, Giglia L, Maxwell C, McDonald SD. Can we safely recommend gestational weight gain below the 2009 guidelines in obese women? A systematic review and meta-analysis. Obes Rev. 2015;16(3):189–206. https://doi.org/10.1111/obr.12238.

    Article  CAS  PubMed  Google Scholar 

  39. Jeric M, Roje D, Medic N, Strinic T, Mestrovic Z, Vulic M. Maternal pre-pregnancy underweight and fetal growth in relation to institute of medicine recommendations for gestational weight gain. Early Hum Dev. 2013;89(5):277–81. https://doi.org/10.1016/j.earlhumdev.2012.10.004.

    Article  PubMed  Google Scholar 

  40. Goldstein RF, Abell SK, Ranasinha S, Misso M, Boyle JA, Black MH, et al. Association of gestational weight gain with maternal and infant outcomes: a systematic review and meta-analysis. JAMA. 2017;317(21):2207–25. https://doi.org/10.1001/jama.2017.3635.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Pongcharoen T, Gowachirapant S, Wecharak P, Sangket N, Winichagoon P. Pre-pregnancy body mass index and gestational weight gain in Thai pregnant women as risks for low birth weight and macrosomia. Asia Pac J Clin Nutr. 2016;25(4):810–7. https://doi.org/10.6133/apjcn.092015.41.

    Article  CAS  PubMed  Google Scholar 

  42. Ruhstaller KE, Bastek JA, Thomas A, McElrath TF, Parry SI, Durnwald CP. The effect of early excessive weight gain on the development of hypertension in pregnancy. Am J Perinatol. 2016;33(12):1205–10. https://doi.org/10.1055/s-0036-1585581.

    Article  PubMed  Google Scholar 

  43. Rong K, Yu K, Han X, Szeto IM, Qin X, Wang J, et al. Pre-pregnancy BMI, gestational weight gain and postpartum weight retention: a meta-analysis of observational studies. Public Health Nutr. 2015;18(12):2172–82. https://doi.org/10.1017/s1368980014002523.

    Article  PubMed  Google Scholar 

  44. Johnson J, Clifton RG, Roberts JM, Myatt L, Hauth JC, Spong CY, et al. Pregnancy outcomes with weight gain above or below the 2009 Institute of Medicine guidelines. Obstet Gynecol. 2013;121(5):969–75. https://doi.org/10.1097/AOG.0b013e31828aea03.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Brunner S, Stecher L, Ziebarth S, Nehring I, Rifas-Shiman SL, Sommer C, et al. Excessive gestational weight gain prior to glucose screening and the risk of gestational diabetes: a meta-analysis. Diabetologia. 2015;58(10):2229–37. https://doi.org/10.1007/s00125-015-3686-5.

    Article  PubMed  Google Scholar 

  46. Rogozinska E, Marlin N, Jackson L, Rayanagoudar G, Ruifrok AE, Dodds J, et al. Effects of antenatal diet and physical activity on maternal and fetal outcomes: individual patient data meta-analysis and health economic evaluation. Health Technol Assess. 2017;21(41):1–158. https://doi.org/10.3310/hta21410.

    Article  PubMed  PubMed Central  Google Scholar 

  47. • Vaivada T, Gaffey MF, Das JK, Bhutta ZA. Evidence-based interventions for improvement of maternal and child nutrition in low-income settings: what’s new? Curr Opin Clin Nutr Metab Care. 2017;20(3):204–10. https://doi.org/10.1097/mco.0000000000000365 This article provides a review of what has been learned about malnutrition interventions throughout the lifespan since the 2013 Lancet series on undernutrition. Making supplementation sources available to vulnerable communities is important to support the fetal growth and nutritional status of newborns.

    Article  PubMed  Google Scholar 

  48. Phelan S. Pregnancy: A “teachable moment” for weight control and obesity prevention. Am J Obstet Gynecol. 2010;202(2):135.e1–8. https://doi.org/10.1016/j.ajog.2009.06.008.

    Article  Google Scholar 

  49. Ota E, Hori H, Mori R, Tobe-Gai R, Farrar D. Antenatal dietary education and supplementation to increase energy and protein intake. Cochrane Database Syst Rev. 2015(6):Cd000032. https://doi.org/10.1002/14651858.CD000032.pub3.

  50. American Academy of Pediatrics Section on Breastfeeding. Breastfeeding and the use of human milk. Pediatrics. 2012;129(3):e827–e41. https://doi.org/10.1542/peds.2011-3552.

    Article  Google Scholar 

  51. World Health Organization. Infant and young child nutrition: global strategy on infant and young child feeding: World Health Assembly 55/15,2002.

  52. United States Department of Agriculture (USDA). Women Infants and Children (WIC). 2018. https://www.fns.usda.gov/wic/breastfeeding-priority-wic-program. Accessed 10 Aug 2018.

  53. Darfour-Oduro SA, Kim J. WIC mothers’ social environment and postpartum health on breastfeeding initiation and duration. Breastfeed Med. 2014;9(10):524–9. https://doi.org/10.1089/bfm.2014.0067.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lovelady CA, Stephenson KG, Kuppler KM, Williams JP. The effects of dieting on food and nutrient intake of lactating women. J Am Diet Assoc. 2006;106(6):908–12. https://doi.org/10.1016/j.jada.2006.03.007.

    Article  PubMed  Google Scholar 

  55. Doran L, Evers S. Energy and nutrient inadequacies in the diets of low-income women who breast-feed. J Am Diet Assoc. 1997;97(11):1283–7. https://doi.org/10.1016/s0002-8223(97)00306-4.

    Article  CAS  PubMed  Google Scholar 

  56. Devine CM, Bove CF, Olson CM. Continuity and change in women’s weight orientations and lifestyle practices through pregnancy and the postpartum period: the influence of life course trajectories and transitional events. Soc Sci Med. 2000;50(4):567–82.

    Article  CAS  PubMed  Google Scholar 

  57. Savage JS, Fisher JO, Birch LL. Parental influence on eating behavior: conception to adolescence. J Law Med Ethics. 2007;35(1):22–34. https://doi.org/10.1111/j.1748-720X.2007.00111.x.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Raiten DJ, Steiber AL, Carlson SE, Griffin I, Anderson D, Hay WW Jr, et al. Working group reports: evaluation of the evidence to support practice guidelines for nutritional care of preterm infants-the Pre-B Project. Am J Clin Nutr. 2016;103(2):648s–78s. https://doi.org/10.3945/ajcn.115.117309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Singhal A, Cole TJ, Fewtrell M, Deanfield J, Lucas A. Is slower early growth beneficial for long-term cardiovascular health? Circulation. 2004;109(9):1108–13. https://doi.org/10.1161/01.Cir.0000118500.23649.Df.

    Article  PubMed  Google Scholar 

  60. • Moloney L, Rozga M, Fenton TR. Nutrition assessment, exposures, and interventions for very-low-birth-weight preterm infants: a scoping review. J Acad Nutr Diet. 2018. https://doi.org/10.1016/j.jand.2018.03.018. This scoping review is the result of a collaboration between the National Institutes of Health and the Academy of Nutrition and Dietetics to review the evidence to provide evidence-based nutrition practice guidelines for preterm infants.

  61. Gunderson GW. The National School Lunch Program: background and development. New York: Nova Science Publishers; 1971.

    Google Scholar 

  62. Yaktine AL, Murphy SP. Aligning nutrition assistance programs with the Dietary Guidelines for Americans. Nutr Rev. 2013;71(9):622–30. https://doi.org/10.1111/nure.12046.

    Article  PubMed  Google Scholar 

  63. Shloim N, Edelson LR, Martin N, Hetherington MM. Parenting styles, feeding styles, feeding practices, and weight status in 4-12 year-old children: a systematic review of the literature. Front Psychol. 2015;6:1849. https://doi.org/10.3389/fpsyg.2015.01849.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Yavuz HM, van Ijzendoorn MH, Mesman J, van der Veek S. Interventions aimed at reducing obesity in early childhood: a meta-analysis of programs that involve parents. J Child Psychol Psychiatry. 2015;56(6):677–92. https://doi.org/10.1111/jcpp.12330.

    Article  PubMed  Google Scholar 

  65. Lassi ZS, Moin A, Das JK, Salam RA, Bhutta ZA. Systematic review on evidence-based adolescent nutrition interventions. Ann N Y Acad Sci. 2017;1393(1):34–50. https://doi.org/10.1111/nyas.13335.

    Article  PubMed  Google Scholar 

  66. Das JK, Salam RA, Thornburg KL, Prentice AM, Campisi S, Lassi ZS, et al. Nutrition in adolescents: physiology, metabolism, and nutritional needs. Ann N Y Acad Sci. 2017;1393(1):21–33. https://doi.org/10.1111/nyas.13330.

    Article  PubMed  Google Scholar 

  67. Mesias M, Seiquer I, Navarro MP. Iron nutrition in adolescence. Crit Rev Food Sci Nutr. 2013;53(11):1226–37. https://doi.org/10.1080/10408398.2011.564333.

    Article  CAS  PubMed  Google Scholar 

  68. Institute of Medicine, Food and Nutrition Board. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron,chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc: a report of the panel on micronutrients. Washington, D.C.: National Academy Press; 2001.

    Google Scholar 

  69. Salam RA, Hooda M, Das JK, Arshad A, Lassi ZS, Middleton P, et al. Interventions to improve adolescent nutrition: a systematic review and meta-analysis. J Adolesc Health. 2016;59(4s):S29–s39. https://doi.org/10.1016/j.jadohealth.2016.06.022.

    Article  PubMed  PubMed Central  Google Scholar 

  70. United Nations International Children’s Emergency Fund (UNICEF). Adolescence: an age of opportunity: State of the World’s Children; 2011.

  71. • Patton GC, Sawyer SM, Santelli JS, Ross DA, Afifi R, Allen NB, et al. Our future: a Lancet commission on adolescent health and wellbeing. Lancet. 2016;387(10036):2423–78. https://doi.org/10.1016/s0140-6736(16)00579-1 Inadequate attention exists for researching adolescent nutrition because this life stage is commonly believed to be a child’s healthiest time of their life. However, environmental factors can dramatically contribute to nutritional decline of adolescents. Malnutrition can be addressed by targeting unhealthy social and environmental influences.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Neumark-Sztainer D, Wall M, Larson NI, Eisenberg ME, Loth K. Dieting and disordered eating behaviors from adolescence to young adulthood: findings from a 10-year longitudinal study. J Am Diet Assoc. 2011;111(7):1004–11. https://doi.org/10.1016/j.jada.2011.04.012.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Movassagh EZ, Baxter-Jones ADG, Kontulainen S, Whiting SJ, Vatanparast H. Tracking dietary patterns over 20 years from childhood through adolescence into young adulthood: the Saskatchewan pediatric bone mineral accrual study. Nutrients. 2017;9(9):E990. https://doi.org/10.3390/nu9090990.

    Article  CAS  PubMed  Google Scholar 

  74. Cusick SE, Kuch AE. Determinants of undernutrition and overnutrition among adolescents in developing countries. Adolesc Med State Art Rev. 2012;23(3):440–56.

    PubMed  PubMed Central  Google Scholar 

  75. Steinberg L, Monahan KC. Age differences in resistance to peer influence. Dev Psychol. 2007;43(6):1531–43. https://doi.org/10.1037/0012-1649.43.6.1531.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Resnick MD, Catalano RF, Sawyer SM, Viner R, Patton GC. Seizing the opportunities of adolescent health. Lancet. 2012;379(9826):1564–7. https://doi.org/10.1016/s0140-6736(12)60472-3.

    Article  PubMed  Google Scholar 

  77. Morin-Major JK, Marin MF, Durand N, Wan N, Juster RP, Lupien SJ. Facebook behaviors associated with diurnal cortisol in adolescents: is befriending stressful? Psychoneuroendocrinology. 2016;63:238–46. https://doi.org/10.1016/j.psyneuen.2015.10.005.

    Article  CAS  PubMed  Google Scholar 

  78. Gerbasi ME, Richards LK, Thomas JJ, Agnew-Blais JC, Thompson-Brenner H, Gilman SE, et al. Globalization and eating disorder risk: peer influence, perceived social norms, and adolescent disordered eating in Fiji. Int J Eat Disord. 2014;47(7):727–37. https://doi.org/10.1002/eat.22349.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Rauof M, Ebrahimi H, Asghari Jafarabadi M, Malek A, Babapour Kheiroddin J. Prevalence of eating disorders among adolescents in the northwest of Iran. Iran Red Crescent Med J. 2015;17(10):e19331. https://doi.org/10.5812/ircmj.19331.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Bucchianeri MM, Fernandes N, Loth K, Hannan PJ, Eisenberg ME, Neumark-Sztainer D. Body dissatisfaction: do associations with disordered eating and psychological well-being differ across race/ethnicity in adolescent girls and boys? Cultur Divers Ethnic Minor Psychol. 2016;22(1):137–46. https://doi.org/10.1037/cdp0000036.

    Article  PubMed  Google Scholar 

  81. Buckingham-Howes S, Armstrong B, Pejsa-Reitz MC, Wang Y, Witherspoon DO, Hager ER, et al. BMI and disordered eating in urban, African American, adolescent girls: the mediating role of body dissatisfaction. Eat Behav. 2018;29:59–63. https://doi.org/10.1016/j.eatbeh.2018.02.006.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Rodgers RF, Watts AW, Austin SB, Haines J, Neumark-Sztainer D. Disordered eating in ethnic minority adolescents with overweight. Int J Eat Disord. 2017;50(6):665–71. https://doi.org/10.1002/eat.22652.

    Article  PubMed  Google Scholar 

  83. Craven KL, Hawks SR. Cultural and western influences on the nutrition transition in Thailand. Promot Educ. 2006;13(1):14–20.

    Article  PubMed  Google Scholar 

  84. Anderson-Fye EP, Brewis A. Fat planet: obesity, culture, and symbolic body capital. School for Advanced Research Advanced Seminar Series. University of New Mexico Press; 2017.

  85. Blum RW, Gates WH. Girlhood, not motherhood: preventing adolescent pregnancy. New York: United Nations Population Fund; 2015.

    Google Scholar 

  86. Azevedo WF, Diniz MB, Fonseca ES, Azevedo LM, Evangelista CB. Complications in adolescent pregnancy: systematic review of the literature. Einstein. 2015;13(4):618–26. https://doi.org/10.1590/s1679-45082015rw3127.

    Article  PubMed  PubMed Central  Google Scholar 

  87. World Health Organization (WHO). Adolescent pregnancy. Geneva: WHO; 2012.

    Google Scholar 

  88. World Health Organization (WHO). Global health estimates 2015: deaths by cause, age, sex, by country and by region, 2000–2015. Geneva: WHO; 2016.

    Google Scholar 

  89. Low LK, Martin K, Sampselle C, Guthrie B, Oakley D. Adolescents’ experiences of childbirth: contrasts with adults. J Midwifery Womens Health. 2003;48(3):192–8.

    Article  PubMed  Google Scholar 

  90. Lawson EJ. The role of smoking in the lives of low-income pregnant adolescents: a field study. Adolescence. 1994;29(113):61–79.

    CAS  PubMed  Google Scholar 

  91. Salam RA, Faqqah A, Sajjad N, Lassi ZS, Das JK, Kaufman M, et al. Improving adolescent sexual and reproductive health: a systematic review of potential interventions. J Adolesc Health. 2016;59(4s):S11–s28. https://doi.org/10.1016/j.jadohealth.2016.05.022.

    Article  PubMed  PubMed Central  Google Scholar 

  92. World Health Organization/London School of Hygiene and Tropical Medicine. Preventing intimate partner and sexual violence against women: taking action and generating evidence. Geneva: World Health Organization; 2010.

    Google Scholar 

  93. Dhar D, McDougal L, Hay K, Atmavilas Y, Silverman J, Triplett D, et al. Associations between intimate partner violence and reproductive and maternal health outcomes in Bihar, India: a cross-sectional study. Reprod Health. 2018;15(1):109. https://doi.org/10.1186/s12978-018-0551-2.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Lundgren R, Amin A. Addressing intimate partner violence and sexual violence among adolescents: emerging evidence of effectiveness. J Adolesc Health. 2015;56(1 Suppl):S42–50. https://doi.org/10.1016/j.jadohealth.2014.08.012.

    Article  PubMed  Google Scholar 

  95. Bourey C, Williams W, Bernstein EE, Stephenson R. Systematic review of structural interventions for intimate partner violence in low- and middle-income countries: organizing evidence for prevention. BMC Public Health. 2015;15:1165. https://doi.org/10.1186/s12889-015-2460-4.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Dutton MA, James L, Langhorne A, Kelley M. Coordinated public health initiatives to address violence against women and adolescents. J Women’s Health. 2015;24(1):80–5. https://doi.org/10.1089/jwh.2014.4884.

    Article  Google Scholar 

  97. Gore DM, Kothari AR. Getting to the root of the problem: health promotion strategies to address the social determinants of health. Can J Public Health. 2013;104(1):e52–4.

    PubMed  PubMed Central  Google Scholar 

  98. Monyeki MA, Awotidebe A, Strydom GL, de Ridder JH, Mamabolo RL, Kemper HC. The challenges of underweight and overweight in South African children: are we winning or losing the battle? A systematic review. Int J Environ Res Public Health. 2015;12(2):1156–73. https://doi.org/10.3390/ijerph120201156.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Mahmood SS, Levy D, Vasan RS, Wang TJ. The Framingham Heart Study and the epidemiology of cardiovascular disease: a historical perspective. Lancet. 2014;383(9921):999–1008. https://doi.org/10.1016/s0140-6736(13)61752-3.

    Article  PubMed  Google Scholar 

  100. Berenson GS. Bogalusa Heart Study: a long-term community study of a rural biracial (black/white) population. Am J Med Sci. 2001;322(5):267–74.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This project was partially supported by the Research and Extension Experiential Learning for Undergraduate (REEU) Program of the National Institute of Food and Agriculture, USDA, Grant # 2017-67032-26021 to the second, third, and fourth author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine R. Arlinghaus.

Ethics declarations

Conflict of Interest

Katherine R. Arlinghaus, Chelsea Truong, Craig A. Johnston, and Daphne C. Hernandez declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Maternal and Childhood Nutrition

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arlinghaus, K.R., Truong, C., Johnston, C.A. et al. An Intergenerational Approach to Break the Cycle of Malnutrition. Curr Nutr Rep 7, 259–267 (2018). https://doi.org/10.1007/s13668-018-0251-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13668-018-0251-0

Keywords

Navigation