Skip to main content

Advertisement

Log in

The Effects of Dietary Omega-3s on Muscle Composition and Quality in Older Adults

  • Nutrition and Aging (MC Serra, Section Editor)
  • Published:
Current Nutrition Reports Aims and scope Submit manuscript

Abstract

This review will focus on findings from the few studies performed to date in humans to examine changes in muscle protein turnover, lean or muscle mass, and physical function following fish oil-derived omega-3 fatty acid treatment. Although considerable gaps in our current knowledge exist, hypertrophic responses (e.g., improvements in the rate of muscle protein synthesis and mTOR signaling during increased amino acid availability and an increase in muscle volume) have been reported in older adults following prolonged (8 to 24 weeks) of omega-3 fatty acid supplementation. There is also accumulating evidence that increased omega-3 fatty acid levels in red blood cells are positively related to strength and measures of physical function. As a result, increased omega-3 fatty acid consumption may prove to be a promising low-cost dietary approach to attenuate or prevent aging-associated declines in muscle mass and function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Fielding RA, Vellas B, Evans WJ, Bhasin S, Morley JE, Newman AB, et al. Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc. 2011;12(4):249–56.

    Article  PubMed  Google Scholar 

  2. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010;39(4):412–23.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Janssen I, Shepard DS, Katzmarzyk PT, Roubenoff R. The healthcare costs of sarcopenia in the United States. J Am Geriatr Soc. 2004;52(1):80–5.

    Article  PubMed  Google Scholar 

  4. Vincent GK, Velkoff VA. The next four decades: The older population in the United States: 2010 to 2050. Current population reports p 25–1138. Washington, D.C.: U.S. Census Bureau; 2010.

    Google Scholar 

  5. Volpi E, Sheffield-Moore M, Rasmussen BB, Wolfe RR. Basal muscle amino acid kinetics and protein synthesis in healthy young and older men. JAMA. 2001;286(10):1206–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fujita S, Rasmussen BB, Bell JA, Cadenas JG, Volpi E. Basal muscle intracellular amino acid kinetics in women and men. Am J Physiol Endocrinol Metab. 2007;292(1):E77–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Greenhaff PL, Karagounis LG, Peirce N, Simpson EJ, Hazell M, Layfield R, et al. Disassociation between the effects of amino acids and insulin on signaling, ubiquitin ligases, and protein turnover in human muscle. Am J Physiol Endocrinol Metab. 2008;295(3):E595–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cuthbertson D, Smith K, Babraj J, Leese G, Waddell T, Atherton P, et al. Anabolic signaling deficits underlie amino acid resistance of wasting, aging muscle. FASEB J. 2005;19(3):422–4.

    CAS  PubMed  Google Scholar 

  9. Bohe J, Low A, Wolfe RR, Rennie MJ. Human muscle protein synthesis is modulated by extracellular, not intramuscular amino acid availability: a dose–response study. J Physiol. 2003;552(1):315–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Moore DR, Robinson MJ, Fry JL, Tang JE, Glover EI, Wilkinson SB, et al. Ingested protein dose response of muscle and albumin protein synthesis after resistance exercise in young men. Am J Clin Nutr. 2009;89(1):161–8.

    Article  CAS  PubMed  Google Scholar 

  11. Bohe J, Low JF, Wolfe RR, Rennie MJ. Latency and duration of stimulation of human muscle protein synthesis during continuous infusion of amino acids. J Physiol. 2001;532(Pt 2):575–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Atherton PJ, Etheridge T, Watt PW, Wilkinson D, Selby A, Rankin D, et al. Muscle full effect after oral protein: time-dependent concordance and discordance between human muscle protein synthesis and mTORC1 signaling. Am J Clin Nutr. 2010;92:1080–8.

    Article  CAS  PubMed  Google Scholar 

  13. Phillips SM, Tipton KD, Aarsland A, Wolf SE, Wolfe RR. Mixed muscle protein synthesis and breakdown after resistance exercise in humans. Am J Physiol. 1997;273(1):E99–E107.

    CAS  PubMed  Google Scholar 

  14. Tipton KD, Ferrando AA, Phillips SM, Doyle Jr D, Wolfe RR. Postexercise net protein synthesis in human muscle from orally administered amino acids. Am J Physiol. 1999;276(4 Pt 1):E628–34.

    CAS  PubMed  Google Scholar 

  15. Biolo G, Tipton KD, Klein S, Wolfe RR. An abundant supply of amino acids enhances the metabolic effect of exercise on muscle protein. Am J Physiol. 1997;273:E122–9.

    CAS  PubMed  Google Scholar 

  16. Rasmussen BB, Tipton KD, Miller SL, Wolf SE, Wolfe RR. An oral essential amino acid-carbohydrate supplement enhances muscle protein anabolism after resistance exercise. J Appl Physiol. 2000;88(2):386–92.

    CAS  PubMed  Google Scholar 

  17. Kyle UG, Genton L, Hans D, Karsegard L, Slosman DO, Pichard C. Age-related differences in fat-free mass, skeletal muscle, body cell mass and fat mass between 18 and 94 years. Eur J Clin Nutr. 2001;55(8):663–72.

    Article  CAS  PubMed  Google Scholar 

  18. Chevalier S, Gougeon R, Nayar K, Morais JA. Frailty amplifies the effects of aging on protein metabolism: role of protein intake. Am J Clin Nutr. 2003;78(3):422–9.

    CAS  PubMed  Google Scholar 

  19. Dorrens J, Rennie MJ. Effects of ageing and human whole body and muscle protein turnover. Scand J Med Sci Sports. 2003;13(1):26–33.

    Article  CAS  PubMed  Google Scholar 

  20. Balagopal P, Rooyackers OE, Adey DB, Ades PA, Nair KS. Effects of aging on in vivo synthesis of skeletal muscle myosin heavy-chain and sarcoplasmic protein in humans. Am J Physiol. 1997;273(4 Pt 1):E790–800.

    CAS  PubMed  Google Scholar 

  21. Welle S, Thornton C, Jozefowicz R, Statt M. Myofibrillar protein synthesis in young and old men. Am J Physiol. 1993;264(5 Pt 1):E693–8.

    CAS  PubMed  Google Scholar 

  22. Guillet C, Prod’homme M, Balage M, Gachon P, Giraudet C, Morin L, et al. Impaired anabolic response of muscle protein synthesis is associated with S6K1 dysregulation in elderly humans. Faseb J. 2004;18(13):1586–7.

    CAS  PubMed  Google Scholar 

  23. Koopman R, van Loon LJ. Aging, exercise, and muscle protein metabolism. J Appl Physiol. 2009;106(6):2040–8.

    Article  CAS  PubMed  Google Scholar 

  24. Kumar V, Selby A, Rankin D, Patel R, Atherton P, Hildebrandt W, et al. Age-related differences in the dose–response relationship of muscle protein synthesis to resistance exercise in young and old men. J Physiol. 2009;587(1):211–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Moore DR, Churchward-Venne TA, Witard O, Breen L, Burd NA, Tipton KD, et al. Protein ingestion to stimulate myofibrillar protein synthesis requires greater relative protein intakes in healthy older versus younger men. J Gerontol A Biol Sci Med Sci. 2015;70(1):57–62.

    Article  PubMed  Google Scholar 

  26. Wilkes EA, Selby AL, Atherton PJ, Patel R, Rankin D, Smith K, et al. Blunting of insulin inhibition of proteolysis in legs of older subjects may contribute to age-related sarcopenia. Am J Clin Nutr. 2009;90(5):1343–50.

    Article  CAS  PubMed  Google Scholar 

  27. Buford TW, Anton SD, Judge AR, Marzetti E, Wohlgemuth SE, Carter CS, et al. Models of accelerated sarcopenia: critical pieces for solving the puzzle of age-related muscle atrophy. Ageing Res Rev. 2010;9(4):369–83.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Trappe S, Gallagher P, Harber M, Carrithers J, Fluckey J, Trappe T. Single muscle fibre contractile properties in young and old men and women. J Physiol. 2003;552(Pt 1):47–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Skelton DA, Greig CA, Davies JM, Young A. Strength, power and related functional ability of healthy people aged 65–89 years. Age Ageing. 1994;23(5):371–7.

    Article  CAS  PubMed  Google Scholar 

  30. Goodpaster BH, Park SW, Harris TB, Kritchevsky SB, Nevitt M, Schwartz AV, et al. The loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body composition study. J Gerontol A Biol Sci Med Sci. 2006;61(10):1059–64.

    Article  PubMed  Google Scholar 

  31. Stenroth L, Peltonen J, Cronin NJ, Sipila S, Finni T. Age-related differences in Achilles tendon properties and triceps surae muscle architecture in vivo. J Appl Physiol (1985). 2012;113(10):1537–44.

    Article  Google Scholar 

  32. Lorbergs AL, Noseworthy MD, Adachi JD, Stratford PW, MacIntyre NJ. Fat infiltration in the leg is associated with bone geometry and physical function in healthy older women. Calcif Tissue Int. 2015;97(4):353–63.

    Article  CAS  PubMed  Google Scholar 

  33. Marcus RL, Addison O, Kidde JP, Dibble LE, Lastayo PC. Skeletal muscle fat infiltration: impact of age, inactivity, and exercise. J Nutr Health Aging. 2010;14(5):362–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Beavers KM, Beavers DP, Houston DK, Harris TB, Hue TF, Koster A, et al. Associations between body composition and gait-speed decline: results from the Health, Aging, and Body Composition study. Am J Clin Nutr. 2013;97(3):552–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kusko RL, Banerjee C, Long KK, Darcy A, Otis J, Sebastiani P, et al. Premature expression of a muscle fibrosis axis in chronic HIV infection. Skelet Muscle. 2012;2(1):10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Brack AS, Conboy MJ, Roy S, Lee M, Kuo CJ, Keller C, et al. Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science. 2007;317(5839):807–10.

    Article  CAS  PubMed  Google Scholar 

  37. Plow EB, Varnerin N, Cunningham DA, Janini D, Bonnett C, Wyant A, et al. Age-related weakness of proximal muscle studied with motor cortical mapping: a TMS study. PLoS ONE. 2014;9(2), e89371.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Plow EB, Cunningham DA, Bonnett C, Gohar D, Bayram M, Wyant A, et al. Neurophysiological correlates of aging-related muscle weakness. J Neurophysiol. 2013;110(11):2563–73.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Papanikolaou Y, Brooks J, Reider C, Fulgoni 3rd VL. U.S. adults are not meeting recommended levels for fish and omega-3 fatty acid intake: results of an analysis using observational data from NHANES 2003–2008. Nutr J. 2014;13:31. This paper uses NHANES data to show that intake of EPA and DHA in the United States is substantially lower than recommended.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kris-Etherton PM, Taylor DS, Yu-Poth S, Huth P, Moriarty K, Fishell V, et al. Polyunsaturated fatty acids in the food chain in the United States. Am J Clin Nutr. 2000;71(1 Suppl):179S–88S.

    CAS  PubMed  Google Scholar 

  41. Honors MA, Harnack LJ, Zhou X, Steffen LM. Trends in fatty acid intake of adults in the Minneapolis-St Paul, MN Metropolitan Area, 1980–1982 through 2007–2009. J Am Heart Assoc. 2014;3(5), e001023.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Burdge GC, Jones AE, Wootton SA. Eicosapentaenoic and docosapentaenoic acids are the principal products of alpha-linolenic acid metabolism in young men. Br J Nutr. 2002;88(4):355–63.

    Article  CAS  PubMed  Google Scholar 

  43. Hussein N, Ah-Sing E, Wilkinson P, Leach C, Griffin BA, Millward DJ. Long-chain conversion of [13C]linoleic acid and alpha-linolenic acid in response to marked changes in their dietary intake in men. J Lipid Res. 2005;46(2):269–80.

    Article  CAS  PubMed  Google Scholar 

  44. Emken EA, Adlof RO, Gulley RM. Dietary linoleic acid influences desaturation and acylation of deuterium-labeled linoleic and linolenic acids in young adult males. Biochim Biophys Acta. 1994;1213(3):277–88.

    Article  CAS  PubMed  Google Scholar 

  45. Burdge GC, Finnegan YE, Minihane AM, Williams CM, Wootton SA. Effect of altered dietary n-3 fatty acid intake upon plasma lipid fatty acid composition, conversion of [13C]alpha-linolenic acid to longer-chain fatty acids and partitioning towards beta-oxidation in older men. Br J Nutr. 2003;90(2):311–21.

    Article  CAS  PubMed  Google Scholar 

  46. Burdge GC, Wootton SA. Conversion of alpha-linolenic acid to eicosapentaenoic, docosapentaenoic and docosahexaenoic acids in young women. Br J Nutr. 2002;88(4):411–20.

    Article  CAS  PubMed  Google Scholar 

  47. Gebauer SK, Psota TL, Harris WS, Kris-Etherton PM. n-3 fatty acid dietary recommendations and food sources to achieve essentiality and cardiovascular benefits. Am J Clin Nutr. 2006;83(6 Suppl):1526S–35S.

    CAS  PubMed  Google Scholar 

  48. Kris-Etherton PM, Harris WS, Appel LJ. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation. 2002;106(21):2747–57.

    Article  PubMed  Google Scholar 

  49. Katan MB, Deslypere JP, van Birgelen AP, Penders M, Zegwaard M. Kinetics of the incorporation of dietary fatty acids into serum cholesteryl esters, erythrocyte membranes, and adipose tissue: an 18-month controlled study. J Lipid Res. 1997;38(10):2012–22.

    CAS  PubMed  Google Scholar 

  50. Flock MR, Skulas-Ray AC, Harris WS, Etherton TD, Fleming JA, Kris-Etherton PM. Determinants of erythrocyte omega-3 fatty acid content in response to fish oil supplementation: a dose–response randomized controlled trial. J Am Heart Assoc. 2013;2(6), e000513.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Di Marino L, Maffettone A, Cipriano P, Sacco M, Di Palma R, Amato B, et al. Is the erythrocyte membrane fatty acid composition a valid index of skeletal muscle membrane fatty acid composition? Metabolism. 2000;49(9):1164–6.

    Article  PubMed  Google Scholar 

  52. Smith GI, Atherton P, Reeds DN, Mohammed BS, Rankin D, Rennie MJ, et al. Dietary omega-3 fatty acid supplementation increases the rate of muscle protein synthesis in older adults: a randomized controlled trial. Am J Clin Nutr. 2011;93:402–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Smith GI, Atherton P, Reeds DN, Mohammed BS, Rankin D, Rennie MJ, et al. Omega-3 polyunsaturated fatty acids augment the muscle protein anabolic response to hyperinsulinaemia-hyperaminoacidaemia in healthy young and middle-aged men and women. Clin Sci. 2011;121(6):267–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Harris WS, Pottala JV, Varvel SA, Borowski JJ, Ward JN, McConnell JP. Erythrocyte omega-3 fatty acids increase and linoleic acid decreases with age: observations from 160,000 patients. Prostaglandins Leukot Essent Fat Acids. 2013;88(4):257–63.

    Article  CAS  Google Scholar 

  55. Itomura M, Fujioka S, Hamazaki K, Kobayashi K, Nagasawa T, Sawazaki S, et al. Factors influencing EPA+DHA levels in red blood cells in Japan. In Vivo. 2008;22(1):131–5.

    PubMed  Google Scholar 

  56. Dewailly EE, Blanchet C, Gingras S, Lemieux S, Sauve L, Bergeron J, et al. Relations between n-3 fatty acid status and cardiovascular disease risk factors among Quebecers. Am J Clin Nutr. 2001;74(5):603–11.

    CAS  Google Scholar 

  57. Dewailly E, Blanchet C, Lemieux S, Sauve L, Gingras S, Ayotte P, et al. n-3 Fatty acids and cardiovascular disease risk factors among the Inuit of Nunavik. Am J Clin Nutr. 2001;74(4):464–73.

    CAS  PubMed  Google Scholar 

  58. Wei HK, Zhou Y, Jiang S, Tao YX, Sun H, Peng J. Feeding a DHA-enriched diet increases skeletal muscle protein synthesis in growing pigs: association with increased skeletal muscle insulin action and local mRNA expression of insulin-like growth factor 1. Br J Nutr. 2013;110(4):671–80.

    Article  CAS  PubMed  Google Scholar 

  59. Kamolrat T, Gray SR. The effect of eicosapentaenoic and docosahexaenoic acid on protein synthesis and breakdown in murine C2C12 myotubes. Biochem Biophys Res Commun. 2013;432(4):593–8. This paper provides evidence that EPA stimulates the rates of protein synthesis and inhibits protein breakdown.

    Article  CAS  PubMed  Google Scholar 

  60. Gingras AA, White PJ, Chouinard PY, Julien P, Davis TA, Dombrowski L, et al. Long-chain omega-3 fatty acids regulate bovine whole-body protein metabolism by promoting muscle insulin signalling to the Akt-mTOR-S6K1 pathway and insulin sensitivity. J Physiol. 2007;579(Pt 1):269–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Oh PC, Koh KK, Sakuma I, Lim S, Lee Y, Lee S, et al. Omega-3 fatty acid therapy dose-dependently and significantly decreased triglycerides and improved flow-mediated dilation, however, did not significantly improve insulin sensitivity in patients with hypertriglyceridemia. Int J Cardiol. 2014;176(3):696–702.

    Article  PubMed  Google Scholar 

  62. Hill AM, Buckley JD, Murphy KJ, Howe PR. Combining fish-oil supplements with regular aerobic exercise improves body composition and cardiovascular disease risk factors. Am J Clin Nutr. 2007;85(5):1267–74.

    CAS  PubMed  Google Scholar 

  63. Shah AP, Ichiuji AM, Han JK, Traina M, El-Bialy A, Meymandi SK, et al. Cardiovascular and endothelial effects of fish oil supplementation in healthy volunteers. J Cardiovasc Pharmacol Ther. 2007;12(3):213–9.

    Article  CAS  PubMed  Google Scholar 

  64. Walser B, Giordano RM, Stebbins CL. Supplementation with omega-3 polyunsaturated fatty acids augments brachial artery dilation and blood flow during forearm contraction. Eur J Appl Physiol. 2006;97(3):347–54.

    Article  CAS  PubMed  Google Scholar 

  65. Meneilly GS, Elliot T, Bryer-Ash M, Floras JS. Insulin-mediated increase in blood flow is impaired in the elderly. J Clin Endocrinol Metab. 1995;80(6):1899–903.

    CAS  PubMed  Google Scholar 

  66. Rasmussen BB, Fujita S, Wolfe RR, Mittendorfer B, Roy M, Rowe VL, et al. Insulin resistance of muscle protein metabolism in aging. FASEB J. 2006;20(6):768–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Fujita S, Rasmussen BB, Cadenas JG, Grady JJ, Volpi E. Effect of insulin on human skeletal muscle protein synthesis is modulated by insulin-induced changes in muscle blood flow and amino acid availability. Am J Physiol Endocrinol Metab. 2006;291(4):E745–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fujita S, Glynn EL, Timmerman KL, Rasmussen BB, Volpi E. Supraphysiological hyperinsulinaemia is necessary to stimulate skeletal muscle protein anabolism in older adults: evidence of a true age-related insulin resistance of muscle protein metabolism. Diabetologia. 2009;52(9):1889–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Beck SA, Smith KL, Tisdale MJ. Anticachectic and antitumor effect of eicosapentaenoic acid and its effect on protein turnover. Cancer Res. 1991;51(22):6089–93.

    CAS  PubMed  Google Scholar 

  70. Whitehouse AS, Smith HJ, Drake JL, Tisdale MJ. Mechanism of attenuation of skeletal muscle protein catabolism in cancer cachexia by eicosapentaenoic acid. Cancer Res. 2001;61(9):3604–9.

    CAS  PubMed  Google Scholar 

  71. Whitehouse AS, Tisdale MJ. Downregulation of ubiquitin-dependent proteolysis by eicosapentaenoic acid in acute starvation. Biochem Biophys Res Commun. 2001;285(3):598–602.

    Article  CAS  PubMed  Google Scholar 

  72. Krzyminska-Siemaszko R, Czepulis N, Lewandowicz M, Zasadzka E, Suwalska A, Witowski J, et al. The effect of a 12-week omega-3 supplementation on body composition, muscle strength and physical performance in elderly individuals with decreased muscle mass. Int J Environ Res Public Health. 2015;12(9):10558–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Couet C, Delarue J, Ritz P, Antoine JM, Lamisse F. Effect of dietary fish oil on body fat mass and basal fat oxidation in healthy adults. Int J Obes Relat Metab Disord. 1997;21(8):637–43.

    Article  CAS  PubMed  Google Scholar 

  74. Crochemore IC, Souza AF, de Souza AC, Rosado EL. ω-3 polyunsaturated fatty acid supplementation does not influence body composition, insulin resistance, and lipemia in women with type 2 diabetes and obesity. Nutr Clin Pract. 2012;27(4):553–60.

    Article  PubMed  Google Scholar 

  75. Noreen EE, Sass MJ, Crowe ML, Pabon VA, Brandauer J, Averill LK. Effects of supplemental fish oil on resting metabolic rate, body composition, and salivary cortisol in healthy adults. J Int Soc Sports Nutr. 2010;7:31.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Logan SL, Spriet LL. Omega-3 fatty acid supplementation for 12 weeks increases resting and exercise metabolic rate in healthy community-dwelling older females. PLoS ONE. 2015;10(12), e0144828.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Kim J, Wang Z, Heymsfield SB, Baumgartner RN, Gallagher D. Total-body skeletal muscle mass: estimation by a new dual-energy X-ray absorptiometry method. Am J Clin Nutr. 2002;76(2):378–83.

    CAS  PubMed  Google Scholar 

  78. Smith GI, Julliand S, Reeds DN, Sinacore DR, Klein S, Mittendorfer B. Fish oil-derived n-3 PUFA therapy increases muscle mass and function in healthy older adults. Am J Clin Nutr. 2015;102(1):115–22. This study utilized a randomized, double-blind design to convincingly demonstrate that EPA and DHA administration increases muscle volume and strength in healthy, older adults.

    Article  CAS  PubMed  Google Scholar 

  79. Morse CI, Thom JM, Mian OS, Muirhead A, Birch KM, Narici MV. Muscle strength, volume and activation following 12-month resistance training in 70-year-old males. Eur J Appl Physiol. 2005;95(2–3):197–204.

    Article  PubMed  Google Scholar 

  80. Tracy BL, Ivey FM, Hurlbut D, Martel GF, Lemmer JT, Siegel EL, et al. Muscle quality. II. Effects Of strength training in 65- to 75-yr-old men and women. J Appl Physiol. 1999;86(1):195–201.

    CAS  PubMed  Google Scholar 

  81. Roth SM, Ivey FM, Martel GF, Lemmer JT, Hurlbut DE, Siegel EL, et al. Muscle size responses to strength training in young and older men and women. J Am Geriatr Soc. 2001;49(11):1428–33.

    Article  CAS  PubMed  Google Scholar 

  82. Robinson SM, Jameson KA, Batelaan SF, Martin HJ, Syddall HE, Dennison EM, et al. Diet and its relationship with grip strength in community-dwelling older men and women: the Hertfordshire cohort study. J Am Geriatr Soc. 2008;56(1):84–90.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Reinders I, Song X, Visser M, Eiriksdottir G, Gudnason V, Sigurdsson S, et al. Plasma phospholipid PUFAs are associated with greater muscle and knee extension strength but not with changes in muscle parameters in older adults. J Nutr. 2015;145(1):105–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Rousseau JH, Kleppinger A, Kenny AM. Self-reported dietary intake of omega-3 fatty acids and association with bone and lower extremity function. J Am Geriatr Soc. 2009;57(10):1781–8.

    Article  PubMed  Google Scholar 

  85. Rodacki CL, Rodacki AL, Pereira G, Naliwaiko K, Coelho I, Pequito D, et al. Fish-oil supplementation enhances the effects of strength training in elderly women. Am J Clin Nutr. 2012;95(2):428–36.

    Article  CAS  PubMed  Google Scholar 

  86. Lewis EJ, Radonic PW, Wolever TM, Wells GD. 21 days of mammalian omega-3 fatty acid supplementation improves aspects of neuromuscular function and performance in male athletes compared to olive oil placebo. J Int Soc Sports Nutr. 2015;12:28.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Gordon Smith is supported by the Washington University Institute of Clinical and Translational Sciences grant UL1TR000448, sub-award KL2TR000450, from the National Center for Advancing Translational Sciences (NCATS) of the National Institutes of Health (NIH). The content is solely the responsibility of the authors and does not necessarily represent the official view of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon I. Smith.

Ethics declarations

Conflict of Interest

Gordon I. Smith declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the author.

Additional information

This article is part of the Topical Collection on Nutrition and Aging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, G.I. The Effects of Dietary Omega-3s on Muscle Composition and Quality in Older Adults. Curr Nutr Rep 5, 99–105 (2016). https://doi.org/10.1007/s13668-016-0161-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13668-016-0161-y

Keywords

Navigation