Skip to main content
Log in

Microstructural Characterization and Sliding Wear Behavior of Cu/TiC Copper Matrix Composites Developed Using Friction Stir Processing

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

The relatively new severe plastic deformation method, friction stir processing (FSP), is a cutting-edge process to synthesize surface and bulk metal matrix composites. The present work is focused to produce Cu/TiC copper matrix composites (CMCs) and investigate the microstructure and sliding wear behavior at room temperature without lubrication. In the beginning of the process, TiC particulates were pressed in a machined groove on the surface of copper plates. The dimensions of the groove were altered to produce four different volume fractions of TiC particulates (0, 6, 12, and 18 vol%). FSP was accomplished by an optimized set of process parameters. The microstructure was observed using optical microscopy, scanning electron microscopy, and electron back-scattered diffraction. The microstructures showed a consistent dispersion of TiC particulates in the copper matrix irrespective of the volume fraction. The dispersion was observed to be uniform across the whole stir zone region. The interfacial bonding with the copper was proper. The reinforcement of TiC particulates enhanced the microhardness and led to a reduction in the wear rate of the composite remarkably. TiC particulates changed the wear mechanism and the geometry of wear debris. Highest hardness and lowest wear rate were observed in Cu/18 vol% TiC CMC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H. Pacaiová, J. Sinay, R. Turisová, Z. Hajduová, Š. Markulik, Measuring the qualitative factors on copper wire surface. Measurement 109, 359–365 (2017)

    Article  Google Scholar 

  2. K. Surekha, A. Els-Botes, Development of high strength, high conductivity copper by friction stir processing. Mater. Des. 32, 911–916 (2011)

    Article  Google Scholar 

  3. H.M. Tawancy, L.M. Alhems, A microstructural study of the damage sustained by copper shield used in an underground medium-voltage cable. Metallogr. Microstruct. Anal. 6, 73–81 (2017)

    Article  Google Scholar 

  4. N. Selvakumar, S.C. Vettivel, Thermal, electrical and wear behavior of sintered Cu–W nano composite. Mater. Des. 46, 16–25 (2013)

    Article  Google Scholar 

  5. A. Fathy, A.A. Megahed, Prediction of abrasive wear rate of in situ Cu–Al2O3 nano composite using artificial neural networks. Int. J. Adv. Manuf. Technol. 62, 953–963 (2012)

    Article  Google Scholar 

  6. R.G. Zheng, Z.J. Zhan, W.K. Wang, Wear behavior of Cu–La2O3 composite with or without electrical current. Wear 268, 72–76 (2010)

    Article  Google Scholar 

  7. V. Mangam, S. Bhattacharya, K. Das, S. Das, Friction and wear behavior of Cu–CeO2 nano composite coatings synthesized by pulsed electro deposition. Surf. Coat. Technol. 205, 801–805 (2010)

    Article  Google Scholar 

  8. M. Shabani, M.H. Paydar, R. Zamiri, M. Goodarzic, M.M. Moshksar, Microstructural and sliding wear behavior of SiC-particle reinforced copper matrix composites fabricated by sintering and sinter-forging processes. J. Mater. Res. Technol. 5, 5–12 (2016)

    Article  Google Scholar 

  9. T. Liu, P. Shen, F. Qiu, Z. Yin, Q. Lin, Q. Jiang, T. Zhang, Synthesis and mechanical properties of TiC-reinforced Cu-based bulk metallic glass composites. Scr. Mater. 60, 84–87 (2009)

    Article  Google Scholar 

  10. Q. Chena, D.Y. Li, B. Cook, Is porosity always detrimental to the wear resistance of materials?—a computational study on the effect of porosity on erosive wear of TiC/Cu composites. Wear 267, 1153–1159 (2009)

    Article  Google Scholar 

  11. J. Zhuang, Y.B. Liu, Z.Y. Cao, Y.Y. Li, The influence of technological process on dry sliding wear behaviour of titanium carbide reinforcement copper matrix composites. Mater. Trans. 51, 2311–2317 (2010)

    Article  Google Scholar 

  12. A. Chrysanthou, G. Erbaccio, Production of copper-matrix composites by in situ processing. J. Mater. Sci. 30, 6339–6344 (1995)

    Article  Google Scholar 

  13. L. Lu, J.Y.H. Fuh, Z.D. Chen, C.C. Leong, Y.S. Wong, In situ formation of TiC composite using selective laser melting. Mater. Res. Bull. 35, 1555–1561 (2000)

    Article  Google Scholar 

  14. A.R. Kennedy, M. Brown, O. Menekse, Microstructure and dispersion of Cu-TiCX master alloys into molten Cu and the relation to contact angle data. J. Mater. Sci. 40, 2449–2452 (2005)

    Article  Google Scholar 

  15. F. Akhtar, S.J. Askari, K.A. Shah, X. Du, S. Guo, Microstructure, mechanical properties, electrical conductivity and wear behavior of high volume TiC reinforced Cu-matrix composites. Mater. Charact. 60, 327–336 (2009)

    Article  Google Scholar 

  16. Y. Liang, Z. Han, X. Li, Z. Zhang, L. Ren, Study on the reaction mechanism of self- propagating high-temperature synthesis of TiC in the Cu–Ti–C system. Mater. Chem. Phys. 137, 200–206 (2012)

    Article  Google Scholar 

  17. S. Buytoz, F. Dagdelen, S. Islak, M. Kok, D. Kir, E. Ercan, Effect of the TiC content on microstructure and thermal properties of Cu–TiC composites prepared by powder metallurgy. J. Therm. Anal. Calorim. 117, 1277–1283 (2014)

    Article  Google Scholar 

  18. F. Wang, Y. Li, K. Yamanaka, K. Wakon, K. Harata, A. Chiba, Influence of two-step ball-milling condition on electrical and mechanical properties of TiC-dispersion-strengthened Cu alloys. Mater. Des. 64, 441–449 (2014)

    Article  Google Scholar 

  19. M. Li, H. Zhai, Z. Huang, X. Liu, Y. Zhou, S. Li, C. Li, Tensile behavior and strengthening mechanism in ultrafine TiC0.5 particle reinforced Cu–Al matrix composites. J. Alloys Compd. 628, 186–194 (2015)

    Article  Google Scholar 

  20. Y. Liang, Q. Zhao, Z. Han, Z. Zhang, X. Li, L. Ren, Reaction behavior of TiC/Cu composite via thermal explosion reaction (TE) under Ar and air atmosphere. Corros. Sci. 93, 283–292 (2015)

    Article  Google Scholar 

  21. S. Rathod, O.P. Modia, B.K. Prasad, A. Chrysanthou, D. Vallauri, V.P. Deshmukh, A.K. Shah, Cast in situ Cu–TiC composites: synthesis by SHS route and characterization. Mater. Sci. Eng. A 502, 91–98 (2009)

    Article  Google Scholar 

  22. N. Zarrinfar, A.R. Kennedy, P.H. Shipway, Reaction synthesis of Cu–TiCx master-alloys for the production of copper-based composites. Scr. Mater. 50, 949–952 (2004)

    Article  Google Scholar 

  23. H.S. Arora, H. Singh, B.K. Dhindaw, Composite fabrication using friction stir processing: a review. Int. J. Adv. Manuf. Technol. 61, 1043–1055 (2012)

    Article  Google Scholar 

  24. V.V. Patel, V. Badhek, A. Kumar, Effect of polygonal pin profiles on friction stir processed superplasticity of AA7075 alloy. J. Mater. Process. Technol. 240, 68–76 (2017)

    Article  Google Scholar 

  25. V.V. Patel, V. Badhek, A. Kumar, Friction stir processing as a novel technique to achieve superplasticity in aluminum alloys: process variables, variants, and applications. Metallogr. Microstruct. Anal. 5, 278–293 (2016)

    Article  Google Scholar 

  26. C. Huang, W. Li, Z. Zhang, M. Fu, M.P. Planche, H. Liao, G. Montavon, Modification of a cold sprayed SiCp/Al5056 composite coating by friction stir processing. Surf. Coat. Technol. 296, 69–75 (2016)

    Article  Google Scholar 

  27. Z.Y. Ma, Friction stir processing technology review. Metall. Mater. Trans. A 39, 642–658 (2008)

    Article  Google Scholar 

  28. V. Sharma, U. Prakash, B.V. Manoj, Kumar, surface composites by friction stir processing: a review. J. Mater. Process. Technol. 224, 117–134 (2015)

    Article  Google Scholar 

  29. H.R. Akramifard, M. Shamanian, M. Sabbaghian, M. Esmailzadeh, Microstructure and mechanical properties of Cu/SiC metal matrix composite fabricated via friction stir processing. Mater. Des. 54, 838–844 (2014)

    Article  Google Scholar 

  30. L.S. Raju, A. Kumar, Influence of Al2O3 particles on the microstructure and mechanical properties of copper surface composites fabricated by friction stir processing. Def. Technol. 10, 375–383 (2014)

    Article  Google Scholar 

  31. M. Sabbaghian, M. Shamanian, H.R. Akramifard, M. Esmailzadeh, Effect of friction stir processing on the microstructure and mechanical properties of Cu–TiC composite. Ceram. Int. 40, 12969–12976 (2014)

    Article  Google Scholar 

  32. R. Sathiskumar, I. Dinaharan, N. Murugan, S.J. Vijay, Influence of tool rotational speed on microstructure and sliding wear behavior of Cu/B4C surface composite synthesized by friction stir processing. Trans. Nonferrous Metals Soc. China 24, 95–102 (2014)

    Google Scholar 

  33. J. Khosravi, M.K.B. Givi, M. Barmouz, A. Rahi, Microstructural, mechanical, and thermophysical characterization of Cu/WC composite layers fabricated via friction stir processing. Int. J. Adv. Manuf. Technol. 74, 1087–1096 (2014)

    Article  Google Scholar 

  34. R. Shabadi, M.N.A. Fènoël, A. Simar, R. Taillard, P.K. Jain, R. Johnson, Thermal conductivity in yttria dispersed copper. Mater. Des. 65, 869–877 (2015)

    Article  Google Scholar 

  35. J. Jafari, M.K.B. Givi, M. Barmouz, Mechanical and microstructural characterization of Cu/CNT nanocomposite layers fabricated via friction stir processing. Int. J. Adv. Manuf. Technol. 78, 199–209 (2015)

    Article  Google Scholar 

  36. H. Sarmadi, A.H. Kokabi, S.M.S. Reihani, Friction and wear performance of copper–graphite surface composites fabricated by friction stir processing (FSP). Wear 304, 1–12 (2013)

    Article  Google Scholar 

  37. R. Sathiskumar, N. Murugan, I. Dinaharan, S.J. Vijay, Prediction of mechanical and wear properties of copper surface composites fabricated using friction stir processing. Mater. Des. 55, 224–234 (2014)

    Article  Google Scholar 

  38. Y. Zhao, X. Kai, G. Chen, W. Lin, C. Wang, Effects of friction stir processing on the microstructure and superplasticity of in situ nano-ZrB2/2024Al composite. Prog. Nat. Sci. Mater. Int. 26, 69–77 (2016)

    Article  Google Scholar 

  39. M. Barmouz, M.K.B. Givi, Fabrication of in situ Cu/SiC composites using multi-pass friction stir processing: evaluation of microstructural, porosity, mechanical and electrical behavior. Compos. Part A 42, 1445–1453 (2011)

    Article  Google Scholar 

  40. Z. Lin, Q.X. Hui, D.B. Hua, H.X. Bo, Q.M. Li, L. Xin, Preparation of SiCp/Cu composites by Ti-activated pressureless infiltration. Trans. Nonferrous Metals Soc. China 18, 872–878 (2008)

    Article  Google Scholar 

  41. N. Frage, N. Froumin, M. Aizenshtein, M.P. Dariel, Interface reaction in the B4C/(Cu–Si) system. Acta Mater. 52, 2625–2635 (2004)

    Article  Google Scholar 

  42. T. Schubert, A. Brendel, K. Schmid, T. Koeck, Ł. Ciupinski, W. Zielinski, T. Weißgarber, B. Kieback, Interfacial design of Cu/SiC composites prepared by powder metallurgy for heat sink applications. Compos. Part A 38, 2398–2403 (2007)

    Article  Google Scholar 

  43. H. Xing, X. Cao, W. Hu, L. Zhao, J. Zhang, Interfacial reactions in 3D-SiC network reinforced Cu-matrix composites prepared by squeeze casting. Mater. Lett. 59, 1563–1566 (2005)

    Article  Google Scholar 

  44. P. Xue, G.M. Xie, B.L. Xiao, Z.Y. Ma, L. Geng, Effect of heat input conditions on microstructure and mechanical properties of friction-stir-welded pure copper. Metall. Mater. Trans. A 41, 2010–2021 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to eNtsa—Innovation through engineering at Nelson Mandela University, Microscopy Lab at University of Johannesburg, OIM and Texture Lab at Indian Institute of Technology Bombay, and PSG College of Technology Coimbatore for providing the facilities to carry out this investigation. The authors thank Mr. Riaan Brown, Facilities Engineer at Nelson Mandela Metropolitan University for operating the I-STIR friction stir welding platform.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Dinaharan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinaharan, I., Akinlabi, E.T. & Hattingh, D.G. Microstructural Characterization and Sliding Wear Behavior of Cu/TiC Copper Matrix Composites Developed Using Friction Stir Processing. Metallogr. Microstruct. Anal. 7, 464–475 (2018). https://doi.org/10.1007/s13632-018-0455-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-018-0455-0

Keywords

Navigation