Skip to main content
Log in

Influence of Pearlite Formation on the Ductility Response of Commercial Hadfield Steel

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

This manuscript presents the singular event of pearlite occurrence in commercially produced Hadfield steel. A detailed characterization of the microstructure is performed, and its influence on the mechanical properties of the material is analyzed. The found microstructure may be interpreted as carbide formation if observed at the optical microscope. However, it consists of an extremely fine lamellae structure ranging from 40 to 130 nm of thickness. Experimental evidence of pearlite formation is supported by microhardness measurements, X-ray diffraction, and secondary electron microscopy. The pearlite is located on the austenitic grain boundaries and within by means of intragranular islands. The occurrence of this phase is detrimental for the ductility response of the material assessed by means of uniaxial tensile testing and reduction in area determination. It is observed that a pearlite fraction of 20% is responsible for a reduction of 90% in elongation at fracture and a drop of 80% in reduction in area. A short heat treatment performed at 1050 °C allows recovering the ductility response of the material keeping grain size and chemical composition unchanged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. Berns, W. Theisen, Ferrous Materials—Steel and Cast Iron (Springer, New York, 2008)

    Google Scholar 

  2. Y.N. Dastur, W.C. Leslie, Mechanism of work hardening in Hadfield manganese steel. Met. Trans. A 12, 749 (1981)

    Article  Google Scholar 

  3. I. Karaman, H. Sehitoglu, K. Gall, Y. Chumlyakov, H.J. Maier, Deformation of single crystal Hadfield steel by twinning and slip. Acta Mater. 48, 1345 (2000)

    Article  Google Scholar 

  4. P.H. Adler, G.B. Olson, W.S. Owen, Strain hardening of Hadfield manganese steel. Met. Mater. Trans. A 17, 1725 (1986)

    Article  Google Scholar 

  5. I. Karaman, H. Sehitoglu, K. Gall, Y.I. Chumlyakov, On the deformation mechanisms in single crystal Hadfield manganese steels. Scr. Mater. 38, 1009 (1998)

    Article  Google Scholar 

  6. W.S. Owen, M. Grujicic, Strain aging of austenitic Hadfield manganese steel. Acta Mater. 47, 111 (1998)

    Article  Google Scholar 

  7. D. Michalon, G. Mazet, C. Burgio, Manganese steel for abrasive environments. Tribol. Int. 9, 171 (1976)

    Article  Google Scholar 

  8. A. Goldberg, O. Ruano, O. Sherby, Development of ultrafine microstructures and superplasticity in Hadfield manganese steels. Mater. Sci. Eng. A 150, 187 (1992)

    Article  Google Scholar 

  9. S.A. Hackney, G.J. Shiflet, The pearlite-austenite growth interface in an Fe–0.8C–12Mn alloy. Acta Met. 35, 1007 (1987)

    Article  Google Scholar 

  10. S.A. Hackney, G.J. Shiflet, Pearlite growth mechanism. Acta Met. 35, 1019 (1987)

    Article  Google Scholar 

  11. S.A. Hackney, G.J. Shiflet, Interfacial structure at the pearlite: austenite growth interface in an Fe–0.8C–12Mn steel. Scr. Met. 19, 757 (1985)

    Article  Google Scholar 

  12. S.A. Hackney, Morphological instabilities and branching processes at the initiation of the eutectoid transformation. Scr. Met. Mater. 25, 1453 (1991)

    Article  Google Scholar 

  13. C.R. Hutchinson, G.J. Shiflet, The formation of partitioned pearlite at temperatures above the upper Ae1 in an Fe–C–Mn steel. Scr. Mater. 50, 1 (2004)

    Article  Google Scholar 

  14. A.Y.M. Ontman, G.J. Shiflet, Thermodynamic mapping of austenite decomposition’s approach toward equilibrium in Fe–C–Mn at 700 °C. Acta Mater. 89, 98 (2015)

    Article  Google Scholar 

  15. R.J. Dippenaar, R.W.K. Honeycombe, The crystallography and nucleation of pearlite. Proc. R. Soc. A Math. Phys. Eng. Sci. 333, 455 (1973)

    Article  Google Scholar 

  16. M.M. Atabaki, S. Jafari, H. Abdollah-pour, Abrasive wear behavior of high chromium cast iron and Hadfield steel-A comparison. J. Iron. Steel Res. Int. 19, 43 (2012)

    Article  Google Scholar 

  17. H. Dierkes, R. Dronskowski, High-resolution powder neutron diffraction on Mn3C. Z. Anorg. Allg. Chem. 640, 3148 (2014)

    Article  Google Scholar 

  18. ASM International. Volume 3-Alloy Phase Diagrams (1992)

  19. D.S. Zhou, G.J. Shiflet, Ferrite: cementite crystallography in pearlite. Met. Trans. A 23, 1259 (1992)

    Article  Google Scholar 

  20. ASTM A128/A128M - 93 Standard Specification for Steel Castings, Austenitic Manganese (2003)

  21. M.X. Zhang, P.M. Kelly, The morphology and formation mechanism of pearlite in steels. Mater. Charact. 60, 545 (2009)

    Article  Google Scholar 

  22. D.A. Porter, K.E. Easterling, Phase Transformations in Metals and Alloys (Chapman & Hall, London, 1992)

    Book  Google Scholar 

  23. N.A. Razik, G.W. Lorimer, N. Ridley, An investigation of manganese partitioning during the austenite-pearlite transformation using analytical electron microscopy. Acta Met. 22, 1249 (1974)

    Article  Google Scholar 

  24. A.R. Rosenfield, G.T. Hahn, J.D. Embury, Fracture of steels containing pearlite. Met. Trans. 3, 2797 (1972)

    Article  Google Scholar 

  25. H.K.D.H. Bhadeshia, R. Honeycombe, Steels-Microstructure and Properties, 3rd edn. (Butterworth-Heinemann, Oxford, 2006)

    Google Scholar 

  26. P.J.J. Ratto, A.F. Ansaldi, V.E. Fierro, F.R. Agüera, H.N. Alvarez, Villar, and J. A. Sikora, Low temperature impact tests in austempered ductile iron and other spheroidal graphite cast iron structures. ISIJ Int. 41, 372 (2001)

    Article  Google Scholar 

  27. H. Kim, M. Kang, H.J. Jung, H.S. Kim, C.M. Bae, S. Lee, Mechanisms of toughness improvement in Charpy impact and fracture toughness tests of non-heat-treating cold-drawn steel bar. Mater. Sci. Eng. A 571, 38 (2013)

    Article  Google Scholar 

  28. I. Gutiérrez, Effect of microstructure on the impact toughness of Nb-microalloyed steel: Generalisation of existing relations from ferrite-pearlite to high strength microstructures. Mater. Sci. Eng. A 571, 57 (2013)

    Article  Google Scholar 

  29. R.A. Gonzaga, Influence of ferrite and pearlite content on mechanical properties of ductile cast irons. Mater. Sci. Eng., A 567, 1 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of CONICET (Argentina) under Grant PDTS-251.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Martín.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martín, M., Raposo, M., Druker, A. et al. Influence of Pearlite Formation on the Ductility Response of Commercial Hadfield Steel. Metallogr. Microstruct. Anal. 5, 505–511 (2016). https://doi.org/10.1007/s13632-016-0316-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-016-0316-7

Keywords

Navigation