Skip to main content
Log in

Characterization of Anisotropy in Hardness and Indentation Modulus by Nanoindentation

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

This paper provides a useful guide how to characterize material anisotropy by nanoindentation. Hardness and indentation modulus of austenitic stainless steel (grade A304) were characterized by instrumented indentation at the grain scale (at low indentation load and depth of penetration). We applied the grid indentation method on an area containing several grains with different crystallographic orientation which was simultaneously characterized by electron back-scatter diffraction. Hardness and indentation modulus dependencies on crystallographic orientation were then evaluated and compared with single crystal Young’s modulus and finite element simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. W.C. Oliver, G.M. Pharr, Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1580 (1992)

    Article  Google Scholar 

  2. W.C. Oliver, G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J. Mater. Res. 19, 3–20 (2004)

    Article  Google Scholar 

  3. ISO 14577-2, Instrumented Indentation Test for Hardness and Materials Parameters (ISO, Geneva, 2002)

    Google Scholar 

  4. A.C. Fischer-Cripps, Nanoindentation, 3rd edn. (Springer, New York, 2011)

    Book  Google Scholar 

  5. I.N. Sneddon, The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47–57 (1965)

    Article  Google Scholar 

  6. J.R. Willis, Hertzian contact of anisotropic bodies. J. Mech. Phys. Solids 14, 163–176 (1966)

    Article  Google Scholar 

  7. J.J. Vlassak, W.D. Nix, Indentation modulus of elastically anisotropic half spaces. Philos. Mag. A 67, 1045–1056 (1993)

    Article  Google Scholar 

  8. J.J. Vlassak, W.D. Nix, Measuring the elastic properties of anisotropic materials by means of indentation experiments. J. Mech. Phys. Solids 42, 1223–1245 (1994)

    Article  Google Scholar 

  9. G. Constantinides, K.S. Ravi Chandran, F.-J. Ulm, K.J. Van Vliet, Grid indentation analysis of composite microstructure and mechanics: principles and validation. Mater. Sci. Eng. A 430, 189–202 (2006)

    Article  Google Scholar 

  10. N.X. Randall, M. Vandamme, F.-J. Ulm, Nanoindentation analysis as a two-dimensional tool for mapping the mechanical properties of complex surfaces. J. Mater. Res. 24, 679–690 (2009)

    Article  Google Scholar 

  11. J. Nohava, P. Haušild, Š. Houdková, R. Enžl, Comparison of isolated indentation and grid indentation methods for HVOF sprayed cermets. J. Therm. Spray Technol. 21, 651–658 (2012)

    Article  Google Scholar 

  12. P. Haušild, J. Nohava, P. Pilvin, Characterisation of strain-induced martensite in a metastable austenitic stainless steel by nanoindentation. Strain 47, 129–133 (2011)

    Article  Google Scholar 

  13. P. Haušild, A. Materna, J. Nohava, On the identification of stress–strain relation by instrumented indentation with spherical indenter. Mater. Des. 37, 373–378 (2012)

    Article  Google Scholar 

  14. D.T. Sandwell, Biharmonic spline interpolation of GEOS-3 and SEASAT altimeter data. Geophys. Res. Lett. 2, 139–142 (1987)

    Article  Google Scholar 

  15. Marc 2012, Volume A, Theory and User Information, MSC.Software Corporation, 813 p (2012)

  16. H.M. Ledbetter, Predicted monocrystal elastic constants of 304-type stainless steel. Phys. B+C 128, 1–4 (1985)

    Article  Google Scholar 

  17. J.C. Hay, A. Bolshakov, G.M. Pharr, A critical examination of the fundamental relations used in the analysis of nanoindentation data. J. Mater. Res. 14, 2296–2305 (1999)

    Article  Google Scholar 

  18. H.J. Bunge, Quantitative Texture Analysis (Deutsche Gesellschaft für Metallkunde, Berlin, 1982)

    Google Scholar 

  19. J.C. Stinville, C. Tromas, P. Villechaise, C. Templier, Anisotropy changes in hardness and indentation modulus induced by plasma nitriding of 316L polycrystalline stainless steel. Scripta Mater. 64, 37–40 (2011)

    Article  Google Scholar 

  20. C. Tromas, J.C. Stinville, C. Templier, P. Villechaise, Hardness and elastic modulus gradients in plasma-nitrided 316L polycrystalline stainless steel investigated by nanoindentation tomography. Acta Mater. 60, 1965–1973 (2012)

    Article  Google Scholar 

  21. L. Ma, D.J. Morris, S.L. Jennerjohn, D.F. Bahr, L.E. Levine, The role of probe shape on the initiation of metal plasticity in nanoindentation. Acta Mater. 60, 4729–4739 (2012)

    Article  Google Scholar 

  22. Y. Huang, A User-Material Subroutine Incorporating Single Crystal Plasticity in the ABAQUS Finite Element Program. Mechanics Report 178, Division of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, (1991)

Download references

Acknowledgments

This work was carried out in the frame of the research projects GACR P108/12/1872 (Czech Science Foundation) and SGS13/223/OHK4/3T/14 (Grant Agency of the Czech Technical University in Prague).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Haušild.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haušild, P., Materna, A. & Nohava, J. Characterization of Anisotropy in Hardness and Indentation Modulus by Nanoindentation. Metallogr. Microstruct. Anal. 3, 5–10 (2014). https://doi.org/10.1007/s13632-013-0110-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-013-0110-8

Keywords

Navigation